

GromacsWrapper — a Python framework for Gromacs

	Release

	0.7.0

	Date

	August 09, 2018

GromacsWrapper is a Python package (Python 2.7.x and Python > 3.4)
that wraps system calls to Gromacs [http://www.gromacs.org] tools into thin classes. This
allows for fairly seamless integration of the gromacs tools into
Python [http://www.python.org] scripts. This is generally superior to shell scripts because
of Python’s better error handling and superior data structures. It
also allows for modularization and code re-use. In addition, commands,
warnings and errors are logged to a file so that there exists a
complete history of what has been done.

Gromacs [http://www.gromacs.org] versions 4.6.x, 2016.x, and 2018.x are all
supported. GromacsWrapper detects your Gromacs tools and provides them
as gromacs.grompp(), gromacs.mdrun(), etc, regardless of
your Gromacs version, which allows one to write scripts that are
broadly Gromacs-version agnostic. Source your GMXRC file or make
the gmx binary (for versions ≥ 2016) or all the gromacs
tools available on your PATH for GromacsWrapper to find the
Gromacs installation.

See INSTALL for download and installation instructions. Documentation [https://gromacswrapper.readthedocs.io/]
is primarily provided through the Python doc strings (from which most of the
online documentation is generated).

The source code itself is available in the GromacsWrapper git
repository [https://github.com/Becksteinlab/GromacsWrapper].

Warning

Please be aware that this is alpha software that most
definitely contains bugs. The API is not stable yet and can change
between releases.

It is your responsibility to ensure that you are running
simulations with sensible parameters.

The package and the documentation are still in flux and any
feedback, bug reports, suggestions [https://github.com/Becksteinlab/GromacsWrapper/issues] and contributions are very welcome. See the
package README: GromacsWrapper for contact details.

See also

Other approaches to interfacing Python [http://www.python.org] and Gromacs [http://www.gromacs.org]
are listed under Alternatives to GromacsWrapper.

Contents

	Installation
	README: GromacsWrapper

	INSTALL

	Configuration
	Basic options

	More options

	GromacsWrapper package
	gromacs – GromacsWrapper Package Overview

	Gromacs core modules

	Gromacs building blocks

	Alternatives to GromacsWrapper

Indices and tables

	Index

	Module Index

	Search Page

Installation

The package contains two files, README and INSTALL, which should get you
started quickly.

If everything works perfectly then you might be able to install a
working version of GromacsWrapper with a simple

python setup.py install

from the unpacked sources.

	README: GromacsWrapper
	Licence

	Citing

	Download and Availability

	Contact

	INSTALL
	Quick installation instructions

	Manual Download

	Source code access

	Requirements

README: GromacsWrapper

[image: Latest release on zenodo (with DOI)] [https://zenodo.org/badge/latestdoi/13219/Becksteinlab/GromacsWrapper]

A primitive wrapper around the Gromacs tools until we have proper
python bindings. It also provides a small library (cook book) of
often-used recipes and an optional analysis module with plugins for
more complicated analysis tasks.

See INSTALL for installation instructions. Documentation [https://gromacswrapper.readthedocs.org] is
mostly provided through the python doc strings. See Download and
Availability for download instructions if the instructions in
INSTALL are not sufficient.

The source code is also available in the GromacsWrapper git
repository [https://github.com/Becksteinlab/GromacsWrapper].

Please be aware that this is alpha software that most definitely
contains bugs. It is your responsibility to ensure that you are
running simulations with sensible parameters.

Licence

The GromacsWrapper package is made available under the terms of
the GNU Public License v3 [http://www.gnu.org/licenses/gpl.html] (or any higher version at your choice)
except as noted below. See the file COPYING for the licensing terms
for all modules.

Citing

[image: Latest release on zenodo (with DOI)] [https://zenodo.org/badge/latestdoi/13219/Becksteinlab/GromacsWrapper]

GromacsWrapper was written by Oliver Beckstein with contributions from
many other people. Please see the file AUTHORS [https://raw.githubusercontent.com/Becksteinlab/GromacsWrapper/master/AUTHORS] for all the names.

If you find this package useful and use it in published work I’d be
grateful if it was acknowledged in text as

“… used GromacsWrapper (Oliver Beckstein et al,
https://github.com/Becksteinlab/GromacsWrapper doi: 10.5281/zenodo.17901)”

or in the Acknowledgements section.

Thank you.

Download and Availability

The GromacsWrapper home page is
https://github.com/Becksteinlab/GromacsWrapper. The latest release of the
package is being made available from https://github.com/Becksteinlab/GromacsWrapper/releases

You can also clone the GromacsWrapper git repository [https://github.com/Becksteinlab/GromacsWrapper] or fork for
your own development:

git clone git://github.com/Becksteinlab/GromacsWrapper.git

Contact

Please use the Issue Tracker [https://github.com/Becksteinlab/GromacsWrapper/issues] to report bugs, installation problems,
and feature requests (mention @orbeckst in the issue report).

INSTALL

This document should help you to install the GromacsWrapper
package. Please raise and issue in the Issue Tracker [https://github.com/Becksteinlab/GromacsWrapper/issues] if problems
occur or if you have suggestions on how to improve the package or
these instructions.

Quick installation instructions

The latest release can be directly installed
from the internet:

pip install GromacsWrapper

This will automatically download and install the latest version of
GromacsWrapper from PyPi [https://pypi.org/project/GromacsWrapper/].

Manual Download

If your prefer to download manually, get the latest stable release
from https://github.com/Becksteinlab/GromacsWrapper/releases and
either

pip install GromacsWrapper-0.7.0.tar.gz

or install from the unpacked source:

tar -zxvf GromacsWrapper-0.7.0.tar.gz
cd GromacsWrapper-0.7.0
python setup.py install

Source code access

The tar archive from https://github.com/Becksteinlab/GromacsWrapper/releases
contains a full source code distribution.

In order to follow code development you can also browse the code
git repository at https://github.com/Becksteinlab/GromacsWrapper or
clone the git repository from

git://github.com/Becksteinlab/GromacsWrapper.git

and checkout the *master& branch:

git clone https://github.com/Becksteinlab/GromacsWrapper.git
cd GromacsWrapper

Requirements

Python [http://www.python.org] 2.7.x or Python >= 3.4 and Gromacs [http://www.gromacs.org] (4.6.x, 2016, 2018) must
be installed. ipython [http://ipython.scipy.org] is very much recommended. These packages might
already be available through your local package manager such as
aptitude/apt, yum, yast, fink or macports.

System requirements

Tested with Python 2.7.x and Python 3.5/3.6 on Linux and Mac
OS X. Earlier Python versions are not supported.

Note

Python 3 support is currently in alpha state; in principle
it is fully supported but if you find bugs please report them
through the Issue Tracker [https://github.com/Becksteinlab/GromacsWrapper/issues].

Required Python modules

The basic package makes use of numpy [http://numpy.scipy.org] and numkit [https://github.com/Becksteinlab/numkit] (which uses scipy [https://www.scipy.org/scipylib/index.html]);
all dependencies are installed during a normal installation process.

Configuration

This section documents how to configure the GromacsWrapper package. There
are options to configure where log files and templates directories are located
and options to tell exactly which commands to load into this package. Any
configuration is optional and all options has sane defaults. Further
documentation can be found at gromacs.config.

Changed in version 0.6.0: The format of the tools variable in the [Gromacs] section of the
config file was changed for Gromacs 5 commands.

Basic options

Place an INI file named ~/.gromacswrapper.cfg in your home directory, it
may look like the following document:

[Gromacs]
GMXRC = /usr/local/gromacs/bin/GMXRC

The Gromacs software suite needs some environment variables that are set up
sourcing the GMXRC file. You may source it yourself or set an option like
the above one. If this option isn’t provided, GromacsWrapper will guess
that Gromacs was globally installed like if it was installed by the apt-get
program.

As there isn’t yet any way to know which Gromacs version to use,
GromacsWrapper will first try to use Gromacs 5 if available, then to use
Gromacs 4. If you have both versions and want to use version 4 or just want
to document it, you may specify the which release version will be used:

[Gromacs]
GMXRC = /usr/local/gromacs/bin/GMXRC
release = 4.6.7

For now GromacsWrapper will guess which tools are available to put it into
gromacs.tools, but you can always configure it manually. Gromacs 5 has
up to 4 commands usually named:

[Gromacs]
tools = gmx gmx_d gmx_mpi gmx_mpi_d

This option will instruct which commands to load. For Gromacs 4 you’ll need to
specify more tools:

[Gromacs]
GMXRC = /usr/local/gromacs/bin/GMXRC
release = 4
tools =
 g_cluster g_dyndom g_mdmat g_principal g_select g_wham mdrun
 do_dssp g_clustsize g_enemat g_membed g_protonate g_sgangle g_wheel mdrun_d
 editconf g_confrms g_energy g_mindist g_rama g_sham g_x2top mk_angndx
 eneconv g_covar g_filter g_morph g_rdf g_sigeps genbox pdb2gmx
 g_anadock g_current g_gyrate g_msd g_sorient genconf
 g_anaeig g_density g_h2order g_nmeig g_rms g_spatial genion tpbconv
 g_analyze g_densmap g_hbond g_nmens g_rmsdist g_spol genrestr trjcat
 g_angle g_dielectric g_helix g_nmtraj g_rmsf g_tcaf gmxcheck trjconv
 g_bar g_dih g_helixorient g_order g_rotacf g_traj gmxdump trjorder
 g_bond g_dipoles g_kinetics g_pme_error g_rotmat g_tune_pme grompp
 g_bundle g_disre g_lie g_polystat g_saltbr g_vanhove make_edi xpm2ps
 g_chi g_dist g_luck g_potential g_sas g_velacc make_ndx

Commands will be available directly from the gromacs:

import gromacs
gromacs.mdrun_d # either v5 `gmx_d mdrun` or v4 `mdrun_d`
gromacs.mdrun # either v5 `gmx mdrun` or v4 `mdrun`

More options

Other options are to set where template for job submission systems and.mdp
files are located:

[DEFAULT]
Directory to store user templates and rc files.
configdir = ~/.gromacswrapper

Directory to store user supplied queuing system scripts.
qscriptdir = %(configdir)s/qscripts

Directory to store user supplied template files such as mdp files.
templatesdir = %(configdir)s/templates

And there are yet options for how to handle logging:

[Logging]
name of the logfile that is written to the current directory
logfilename = gromacs.log

loglevels (see Python's logging module for details)
ERROR only fatal errors
WARN only warnings
INFO interesting messages
DEBUG everything

console messages written to screen
loglevel_console = INFO

file messages written to logfilename
loglevel_file = DEBUG

If needed you may set up basic configuration files and directories using
gromacs.config.setup():

import gromacs
gromacs.config.setup()

GromacsWrapper package

The gromacs package makes Gromacs [http://www.gromacs.org] tools available via
thin python wrappers. In addition, it provides little building blocks
to solve commonly encountered tasks.

Contents:

	gromacs – GromacsWrapper Package Overview
	Modules

	Examples

	Warnings and Exceptions

	Logging

	Version

	Gromacs core modules
	gromacs.core – Core functionality

	gromacs.config – Configuration for GromacsWrapper

	gromacs.environment – Run time modification of behaviour

	gromacs.formats – Accessing various files

	gromacs.utilities – Helper functions and classes

	analysis.collections – Handling of groups of simulation instances

	gromacs.tools – Gromacs commands classes

	Gromacs building blocks
	gromacs.cbook – Gromacs Cook Book

	gromacs.setup – Setting up a Gromacs MD run

	gromacs.scaling – Partial tempering

	gromacs.qsub – utilities for batch submission systems

gromacs – GromacsWrapper Package Overview

GromacsWrapper (package gromacs) is a thin shell around the Gromacs [http://www.gromacs.org]
tools for light-weight integration into python scripts or interactive use in
ipython [http://ipython.scipy.org].

Modules

	gromacs

	The top level module contains all gromacs tools; each tool can be
run directly or queried for its documentation. It also defines
the root logger class (name gromacs by default).

	gromacs.config

	Configuration options. Not really used much at the moment.

	gromacs.cbook

	The Gromacs cook book contains typical applications of the tools. In many
cases this not more than just an often-used combination of parameters for
a tool.

	gromacs.tools

	Contains classes that wrap the gromacs tools. They are automatically
generated from the list of tools in gromacs.tools.gmx_tools.

	gromacs.fileformats

	Classes to represent data files in various formats such as
xmgrace graphs. The classes allow reading and writing and for
graphs, also plotting of the data.

	gromacs.utilities

	Convenience functions and mixin-classes that are used as helpers
in other modules.

	gromacs.setup

	Functions to set up a MD simulation, containing tasks such as solvation
and adding ions, energy minimizqtion, MD with position-restraints, and
equilibrium MD.

	gromacs.qsub

	Functions to handle batch submission queuing systems.

	gromacs.run

	Classes to run mdrun in various way, including on
multiprocessor systems.

Examples

The following examples should simply convey the flavour of using the
package. See the individual modules for more examples.

Getting help

In python:

gromacs.g_dist.help()
gromacs.g_dist.help(long=True)

In ipython:

gromacs.g_dist ?

Simple usage

Gromacs flags are given as python keyword arguments:

gromacs.g_dist(v=True, s='topol.tpr', f='md.xtc', o='dist.xvg', dist=1.2)

Input to stdin of the command can be supplied:

gromacs.make_ndx(f='topol.tpr', o='md.ndx',
 input=('keep "SOL"', '"SOL" | r NA | r CL', 'name 2 solvent', 'q'))

Output of the command can be caught in a variable and analyzed:

rc, output, junk = gromacs.grompp(..., stdout=False) # collects command output
for line in output.split('\n'):
 line = line.strip()
 if line.startswith('System has non-zero total charge:'):
 qtot = float(line[34:])
 break

(See gromacs.cbook.grompp_qtot() for a more robust implementation of this
application.)

Warnings and Exceptions

A number of package-specific exceptions (GromacsError) and
warnings (GromacsFailureWarning, GromacsImportWarning,
GromacsValueWarning, AutoCorrectionWarning,
BadParameterWarning) can be raised.

If you want to stop execution at, for instance, a AutoCorrectionWarning or
BadParameterWarning then use the python warnings [https://docs.python.org/3/library/warnings.html#module-warnings] filter:

import warnings
warnings.simplefilter('error', gromacs.AutoCorrectionWarning)
warnings.simplefilter('error', gromacs.BadParameterWarning)

This will make python raise an exception instead of moving on. The default is
to always report, eg:

warnings.simplefilter('always', gromacs.BadParameterWarning)

The following exceptions are defined:

	
exception gromacs.GromacsError

	Error raised when a gromacs tool fails.

Returns error code in the errno attribute and a string in strerror.
TODO: return status code and possibly error message

	
exception gromacs.MissingDataError

	Error raised when prerequisite data are not available.

For analysis with gromacs.analysis.core.Simulation this typically
means that the analyze() method has
to be run first.

	
exception gromacs.ParseError

	Error raised when parsing of a file failed.

The following warnings are defined:

	
exception gromacs.GromacsFailureWarning

	Warning about failure of a Gromacs tool.

	
exception gromacs.GromacsImportWarning

	Warns about problems with using a gromacs tool.

	
exception gromacs.GromacsValueWarning

	Warns about problems with the value of an option or variable.

	
exception gromacs.AutoCorrectionWarning

	Warns about cases when the code is choosing new values automatically.

	
exception gromacs.BadParameterWarning

	Warns if some parameters or variables are unlikely to be appropriate or correct.

	
exception gromacs.MissingDataWarning

	Warns when prerequisite data/files are not available.

	
exception gromacs.UsageWarning

	Warns if usage is unexpected/documentation ambiguous.

	
exception gromacs.LowAccuracyWarning

	Warns that results may possibly have low accuracy.

Logging

The library uses python’s logging [http://docs.python.org/library/logging.html] module to keep a history of what it has been
doing. In particular, every wrapped Gromacs command logs its command line
(including piped input) to the log file (configured in
gromacs.config.logfilename). This facilitates debugging or simple
re-use of command lines for very quick and dirty work. The logging facilty
appends to the log file and time-stamps every entry. See gromacs.config
for more details on configuration.

It is also possible to capture output from Gromacs commands in a file
instead of displaying it on screen, as described under
Input and Output.

Normally, one starts logging with the start_logging() function but in
order to obtain logging messages (typically at level debug) right from the
start one may set the environment variable GW_START_LOGGING to any
value that evaluates to True (e.g., “True” or “1”).

Version

The package version is recorded in the gromacs.__version__ variable.

Gromacs core modules

This section documents the modules, classes, and functions on which
the other parts of the package rely. The information is probably
mostly relevant to anyone who wants to extend the package.

	gromacs.core – Core functionality

	gromacs.config – Configuration for GromacsWrapper

	gromacs.environment – Run time modification of behaviour

	gromacs.formats – Accessing various files

	gromacs.utilities – Helper functions and classes

	analysis.collections – Handling of groups of simulation instances

	gromacs.tools – Gromacs commands classes

gromacs.core – Core functionality

Here the basic command class GromacsCommand is defined. All Gromacs
command classes in gromacs.tools are automatically generated from
it. The documentation of GromacsCommand applies to all wrapped Gromacs
commands and should be read by anyone using this package.

Input and Output

Each command wrapped by either GromacsCommand or Command
takes three additional keyword arguments: stdout, stderr, and
input. stdout and stderr determine how the command returns its own
output.

The input keyword is a string that is fed to the standard input of the
command (actually, subprocess.Popen.stdin [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdin]). Or, if it is not string-like
then we assume it’s actually a file-like object that we can read from, e.g. a
subprocess.Popen.stdout [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdout] or a File.

By setting the stdout and stderr keywords appropriately, one can have the
output simply printed to the screen (use True; this is the default,
although see below for the use of the capture_output
gromacs.environment flag), capture in a python variable as a string for
further processing (use False), write to a file (use a File
instance) or as input for another command (e.g. use the
subprocess.Popen.stdin [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdin]).

When writing setup- and analysis pipelines it can be rather cumbersome to have
the gromacs output on the screen. For these cases GromacsWrapper allows you to
change its behaviour globally. By setting the value of the
gromacs.environment Flag
capture_output to True (in the GromacsWrapper
gromacs.environment.flags registry)

import gromacs.environment
gromacs.environment.flags['capture_output'] = True

all commands will capture their output (like stderr = False and stdout
= False). Explicitly setting these keywords overrides the global
default. The default value for flags['capture_output'] is False,
i.e. output is directed through STDOUT and STDERR.

Warning

One downside of flags['capture_output'] = True is that it becomes much
harder to debug scripts unless the script is written in such a way to show
the output when the command fails. Therefore, it is advisable to only
capture output on well-tested scripts.

A third value of capture_output is the value "file":

gromacs.environment.flags['capture_output'] = "file"

This writes the captured output to a file. The file name is specified in
flags['capture_output_filename' and defaults to
“gromacs_captured_output.txt”. This file is over-written for each
command. In this way one can investigate the output from the last command
(presumably because it failed). STDOUT and STDERR are captured into this file
by default. STDERR is printed first and then STDOUT, which does not necessarily
reflect the order of output one would see on the screen. If your code captures
STDOUT for further processing then an uncaptured STDERR is written to the
capture file.

Note

There are some commands for which capturing output
(flags['capture_output'] = True) might be problematic. If the command
produces a large or inifinite amount of data then a memory error will occur
because Python nevertheless stores the output internally first. Thus one
should avoid capturing progress output from
e.g. Mdrun unless the output has been throttled
appropriately.

Classes

	
class gromacs.core.GromacsCommand(*args, **kwargs)

	Base class for wrapping a Gromacs tool.

Limitations: User must have sourced GMXRC so that the python script can
inherit the environment and find the gromacs programs.

The class doc string is dynamically replaced by the documentation of the
gromacs command the first time the doc string is requested. If the tool is
not available at the time (i.e., cannot be found on :env:`PATH`) then the
generic doc string is shown and an OSError [https://docs.python.org/3/library/exceptions.html#OSError] exception is only raised
when the user is actually trying to the execute the command.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs
command usage information that should have appeared before
this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand('v', f=['md1.xtc','md2.xtc'], o='processed.xtc', t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python
positional arguments ('v') or as keyword argument (v=True);
note the quotes in the first case. Negating a boolean switch can be
done with 'nov', nov=True or v=False (and even nov=False
works as expected: it is the same as v=True).

Any Gromacs options that take parameters are handled as keyword
arguments. If an option takes multiple arguments (such as the
multi-file input -f file1 file2 ...) then the list of files must be
supplied as a python list.

If a keyword has the python value None then it will not be
added to the Gromacs command line; this allows for flexible
scripting if it is not known in advance if an input file is
needed. In this case the default value of the gromacs tool
is used.

Keywords must be legal python keywords or the interpreter raises a
SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError] but of course Gromacs commandline arguments are
not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently
stripped. For instance, -or translates to the illegal keyword
or so it must be underscore-quoted:

cmd(...., _or='mindistres.xvg')

Command execution

The command is executed with the run() method or by
calling it as a function. The two next lines are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at
initialization or one can add additional ones. The same rules for
supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the
Gromacs tool but determine how the command class behaves. They are
only useful when instantiating a class, i.e. they determine how
this tool behaves during all future invocations although it can be
changed by setting failuremode. This is mostly of interest
to developers.

	Keywords

	
	failure

	determines how a failure of the gromacs command is treated; it
can be one of the following:

	‘raise’

	raises GromacsError if command fails

	‘warn’

	issue a GromacsFailureWarning

	None

	just continue silently

	docstring

	additional documentation (ignored) []

Changed in version 0.6.0: The doc keyword is now ignored (because it was not worth the effort to
make it work with the lazy-loading of docs).

	
Popen(*args, **kwargs)

	Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to
communicate() will not need to supply
input. This is necessary if one wants to chain the output from
one command to an input from another.

	TODO

	Write example.

	
commandline(*args, **kwargs)

	Returns the commandline that run() uses (without pipes).

	
failuremode

	mode determines how the GromacsCommand behaves during failure

It can be one of the following:

	‘raise’

	raises GromacsError if command fails

	‘warn’

	issue a GromacsFailureWarning

	None

	just continue silently

	
help(long=False)

	Print help; same as using ? in ipython. long=True also gives call signature.

	
run(*args, **kwargs)

	Run the command; args/kwargs are added or replace the ones given to the constructor.

	
transform_args(*args, **kwargs)

	Combine arguments and turn them into gromacs tool arguments.

	
class gromacs.core.Command(*args, **kwargs)

	Wrap simple script or command.

Set up the command class.

The arguments can always be provided as standard positional
arguments such as

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v", "input.dat"

In addition one can also use keyword arguments such as

c="config.conf", o="output.dat", repeats=3, v=True

These are automatically transformed appropriately according to
simple rules:

	Any single-character keywords are assumed to be POSIX-style
options and will be prefixed with a single dash and the value
separated by a space.

	Any other keyword is assumed to be a GNU-style long option
and thus will be prefixed with two dashes and the value will
be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the
UNIX find command) then provide options and values in the
sequence of positional arguments.

Example

Create a Ls class whose instances execute the ls command:

LS = type("LS", (gromacs.core.Command,), {'command_name': 'ls'})
ls = LS()
ls() # lists directory like ls
ls(l=True) # lists directory like ls -l

Now create an instance that performs a long directory listing by
default:

lslong = LS(l=True)
lslong() # like ls -l

	
Popen(*args, **kwargs)

	Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to
communicate() will not need to supply
input. This is necessary if one wants to chain the output from
one command to an input from another.

	TODO

	Write example.

	
__call__(*args, **kwargs)

	Run command with the given arguments:

rc,stdout,stderr = command(*args, input=None, **kwargs)

All positional parameters args and all gromacs kwargs are passed on
to the Gromacs command. input and output keywords allow communication
with the process via the python subprocess module.

	Arguments

	
	inputstring, sequence

	to be fed to the process’ standard input;
elements of a sequence are concatenated with
newlines, including a trailing one [None]

	stdin

	None or automatically set to PIPE if input given [None]

	stdout

	how to handle the program’s stdout stream [None]

	filehandle

	anything that behaves like a file object

	None or True

	to see output on screen

	False or PIPE

	returns the output as a string in the stdout parameter

	stderr

	how to handle the stderr stream [None]

	STDOUT

	merges standard error with the standard out stream

	False or PIPE

	returns the output as a string in the stderr return parameter

	None or True

	keeps it on stderr (and presumably on screen)

Depending on the value of the GromacsWrapper flag
gromacs.environment.flags```['capture_output']` the above
default behaviour can be different.

All other kwargs are passed on to the Gromacs tool.

	Returns

	The shell return code rc of the command is always returned. Depending
on the value of output, various strings are filled with output from the
command.

	Notes

	In order to chain different commands via pipes one must use the special
PopenWithInput object (see GromacsCommand.Popen() method) instead of the simple
call described here and first construct the pipeline explicitly and then
call the PopenWithInput.communicate() method.

STDOUT and PIPE are objects provided by the subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] module. Any
python stream can be provided and manipulated. This allows for chaining
of commands. Use

from subprocess import PIPE, STDOUT

when requiring these special streams (and the special boolean
switches True/False cannot do what you need.)

(TODO: example for chaining commands)

	
help(long=False)

	Print help; same as using ? in ipython. long=True also gives call signature.

	
run(*args, **kwargs)

	Run the command; args/kwargs are added or replace the ones given to the constructor.

	
transform_args(*args, **kwargs)

	Transform arguments and return them as a list suitable for Popen.

	
class gromacs.core.PopenWithInput(*args, **kwargs)

	Popen class that knows its input.

	Set up the instance, including all the input it shoould receive.

	Call PopenWithInput.communicate() later.

Note

Some versions of python have a bug in the subprocess module
(issue 5179 [http://bugs.python.org/issue5179]) which does not clean up open file
descriptors. Eventually code (such as this one) fails with the
error:

OSError: [Errno 24] Too many open files

A weak workaround is to increase the available number of open
file descriptors with ulimit -n 2048 and run analysis in
different scripts.

Initialize with the standard subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] arguments.

	Keywords

	
	input

	string that is piped into the command

	
communicate(use_input=True)

	Run the command, using the input that was set up on __init__ (for use_input = True)

gromacs.config – Configuration for GromacsWrapper

The config module provides configurable options for the whole package;
It serves to define how to handle log files, set where template files are
located and which gromacs tools are exposed in the gromacs package.

In order to set up a basic configuration file and the directories
a user can execute gromacs.config.setup().

If the configuration file is edited then one can force a rereading of
the new config file with gromacs.config.get_configuration():

gromacs.config.get_configuration()

However, this will not update the available command classes (e.g. when new
executables were added to a tool group). In this case one either has to
reload() a number of modules (gromacs, gromacs.config,
gromacs.tools) although it is by far easier simply to quit python and
freshly import gromacs.

Almost all aspects of GromacsWrapper (paths, names, what is loaded)
can be changed from within the configuration file. The only exception
is the name of the configuration file itself: This is hard-coded as
~/.gromacswrapper.cfg although it is possible to read other
configuration files with the filename argument to
get_configuration().

Configuration management

Important configuration variables are

	
gromacs.config.configdir = '/home/docs/.gromacswrapper'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
gromacs.config.path = ['.', '/home/docs/.gromacswrapper/qscripts', '/home/docs/.gromacswrapper/templates']

	list() -> new empty list
list(iterable) -> new list initialized from iterable’s items

When GromacsWrapper starts up it runs check_setup(). This
notifies the user if any config files or directories are missing and
suggests to run setup(). The check if the default set up exists
can be suppressed by setting the environment variable
GROMACSWRAPPER_SUPPRESS_SETUP_CHECK to ‘true’ (‘yes’ and ‘1’
also work).

Users

Users will likely only need to run gromacs.config.setup() once and
perhaps occasionally execute gromacs.config.get_configuration(). Mainly
the user is expected to configure GromacsWrapper by editing the configuration
file ~/.gromacswrapper.cfg (which has ini-file syntax as described in
ConfigParser).

	
gromacs.config.setup(filename='/home/docs/.gromacswrapper.cfg')

	Prepare a default GromacsWrapper global environment.

	Create the global config file.

	Create the directories in which the user can store template and config files.

This function can be run repeatedly without harm.

	
gromacs.config.get_configuration(filename='/home/docs/.gromacswrapper.cfg')

	Reads and parses the configuration file.

Default values are loaded and then replaced with the values from
~/.gromacswrapper.cfg if that file exists. The global
configuration instance gromacswrapper.config.cfg is updated
as are a number of global variables such as configdir,
qscriptdir, templatesdir, logfilename, …

Normally, the configuration is only loaded when the gromacs
package is imported but a re-reading of the configuration can be forced
anytime by calling get_configuration().

	Returns

	a dict with all updated global configuration variables

	
gromacs.config.check_setup()

	Check if templates directories are setup and issue a warning and help.

Set the environment variable GROMACSWRAPPER_SUPPRESS_SETUP_CHECK
skip the check and make it always return True

:return True if directories were found and False otherwise

Changed in version 0.3.1: Uses GROMACSWRAPPER_SUPPRESS_SETUP_CHECK to suppress check
(useful for scripts run on a server)

Developers

Developers are able to access all configuration data through
gromacs.config.cfg, which represents the merger of the package default
values and the user configuration file values.

	
gromacs.config.cfg = <gromacs.config.GMXConfigParser instance>

	Customized ConfigParser.SafeConfigParser.

	
class gromacs.config.GMXConfigParser(*args, **kwargs)

	Customized ConfigParser.SafeConfigParser.

Reads and parses the configuration file.

Default values are loaded and then replaced with the values from
~/.gromacswrapper.cfg if that file exists. The global
configuration instance gromacswrapper.config.cfg is updated
as are a number of global variables such as configdir,
qscriptdir, templatesdir, logfilename, …

Normally, the configuration is only loaded when the gromacswrapper
package is imported but a re-reading of the configuration can be forced
anytime by calling get_configuration().

	
configuration

	Dict of variables that we make available as globals in the module.

Can be used as

globals().update(GMXConfigParser.configuration) # update configdir, templatesdir ...

	
getLogLevel(section, option)

	Return the textual representation of logging level ‘option’ or the number.

Note that option is always interpreted as an UPPERCASE string
and hence integer log levels will not be recognized.

	
getpath(section, option)

	Return option as an expanded path.

A subset of important data is also made available as top-level package
variables as described under Location of template files (for historical
reasons); the same variable are also available in the dict
gromacs.config.configuration.

	
gromacs.config.configuration = {'configdir': '/home/docs/.gromacswrapper', 'configfilename': '/home/docs/.gromacswrapper.cfg', 'logfilename': 'gromacs.log', 'loglevel_console': 20, 'loglevel_file': 10, 'path': ['.', '/home/docs/.gromacswrapper/qscripts', '/home/docs/.gromacswrapper/templates'], 'qscriptdir': '/home/docs/.gromacswrapper/qscripts', 'templatesdir': '/home/docs/.gromacswrapper/templates'}

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

Default values are hard-coded in

	
gromacs.config.CONFIGNAME = '/home/docs/.gromacswrapper.cfg'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
gromacs.config.defaults = {'configdir': '/home/docs/.gromacswrapper', 'logfilename': 'gromacs.log', 'loglevel_console': 'INFO', 'loglevel_file': 'DEBUG', 'qscriptdir': '/home/docs/.gromacswrapper/qscripts', 'templatesdir': '/home/docs/.gromacswrapper/templates'}

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

Accessing configuration and template files

The following functions can be used to access configuration data. Note that
files are searched first with their full filename, then in all directories
listed in gromacs.config.path, and finally within the package itself.

	
gromacs.config.get_template(t)

	Find template file t and return its real path.

t can be a single string or a list of strings. A string
should be one of

	a relative or absolute path,

	a file in one of the directories listed in gromacs.config.path,

	a filename in the package template directory (defined in the template dictionary
gromacs.config.templates) or

	a key into templates.

The first match (in this order) is returned. If the argument is a
single string then a single string is returned, otherwise a list
of strings.

	Arguments

	t : template file or key (string or list of strings)

	Returns

	os.path.realpath(t) (or a list thereof)

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if no file can be located.

	
gromacs.config.get_templates(t)

	Find template file(s) t and return their real paths.

t can be a single string or a list of strings. A string should
be one of

	a relative or absolute path,

	a file in one of the directories listed in gromacs.config.path,

	a filename in the package template directory (defined in the template dictionary
gromacs.config.templates) or

	a key into templates.

The first match (in this order) is returned for each input argument.

	Arguments

	t : template file or key (string or list of strings)

	Returns

	list of os.path.realpath(t)

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if no file can be located.

Logging

Gromacs commands log their invocation to a log file; typically at
loglevel INFO (see the python logging module [http://docs.python.org/library/logging.html] for details).

	
gromacs.config.logfilename = 'gromacs.log'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
gromacs.config.loglevel_console = 20

	int(x=0) -> int or long
int(x, base=10) -> int or long

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is floating point, the conversion truncates towards zero.
If x is outside the integer range, the function returns a long instead.

If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base. The
literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace.
The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to
interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
gromacs.config.loglevel_file = 10

	int(x=0) -> int or long
int(x, base=10) -> int or long

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is floating point, the conversion truncates towards zero.
If x is outside the integer range, the function returns a long instead.

If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base. The
literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace.
The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to
interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

Gromacs tools and scripts

Fundamentally, GromacsWrapper makes existing Gromacs tools
(executables) available as functions. In order for this to work, these
executables must be found in the environment of the Python process
that runs GromacsWrapper, and the user must list all the tools that
are to be made available.

Setting up the environment

The standard way to set up the Gromacs environment is to source GMXRC in
the shell before running the Python process. GMXRC adjusts a number of
environment variables (such as PATH and LD_LIBRARY_PATH)
but also sets Gromacs-specific environment variables such as GMXBIN,
GMXDATA, and many others:

source /usr/local/bin/GMXRC

(where the path to GMXRC is often set differently to disntinguish different
installed versions of Gromacs).

Alternatively, GromacsWrapper can itself source a GMXRC file and set the
environment with the set_gmxrc_environment() function. The path to a
GMXRC file can be set in the config file in the [Gromacs] section as

[Gromacs]

GMXRC = /usr/local/bin/GMXRC

When GromacsWrapper starts up, it tries to set the environment using the
GMXRC defined in the config file. If this is left empty or is not in the
file, nothing is being done.

	
gromacs.config.set_gmxrc_environment(gmxrc)

	Set the environment from GMXRC provided in gmxrc.

Runs GMXRC in a subprocess and puts environment variables loaded by it
into this Python environment.

If gmxrc evaluates to False then nothing is done. If errors occur
then only a warning will be logged. Thus, it should be safe to just call
this function.

List of tools

The list of Gromacs tools can be specified in the config file in the
[Gromacs] section with the tools variable.

The tool groups are a list of names that determines which tools are made
available as classes in gromacs.tools. If not provided
GromacsWrapper will first try to load Gromacs 5.x then Gromacs 4.x
tools.

If you choose to provide a list, the Gromacs tools section of the config
file can be like this:

[Gromacs]
Release of the Gromacs package to which information in this sections applies.
release = 4.5.3

tools contains the file names of all Gromacs tools for which classes are
generated. Editing this list has only an effect when the package is
reloaded.
(Note that this example has a much shorter list than the actual default.)
tools =
 editconf make_ndx grompp genion genbox
 grompp pdb2gmx mdrun mdrun_d

which tool groups to make available
groups = tools extra

For Gromacs 5.x use a section like the following, where driver commands
are supplied:

[Gromacs]
Release of the Gromacs package to which information in this sections applies.
release = 5.0.5

GMXRC contains the path for GMXRC file which will be loaded. If not
provided is expected that it was sourced as usual before importing this
library.
GMXRC = /usr/local/gromacs/bin/GMXRC

tools contains the command names of all Gromacs tools for which classes are generated.
Editing this list has only an effect when the package is reloaded.
(Note that this example has a much shorter list than the actual default.)
tools = gmx gmx_d

For example, on the commandline you would run

gmx grompp -f md.mdp -c system.gro -p topol.top -o md.tpr

and within GromacsWrapper this would become

gromacs.grompp(f="md.mdp", c="system.gro", p="topol.top", o="md.tpr")

Note

Because of changes in the Gromacs tool in 5.x [http://www.gromacs.org/Documentation/How-tos/Tool_Changes_for_5.0],
GromacsWrapper scripts might break, even if the tool
names are still the same.

Location of template files

Template variables list files in the package that can be used as
templates such as run input files. Because the package can be a zipped
egg we actually have to unwrap these files at this stage but this is
completely transparent to the user.

	
gromacs.config.qscriptdir = '/home/docs/.gromacswrapper/qscripts'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
gromacs.config.templatesdir = '/home/docs/.gromacswrapper/templates'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
gromacs.config.templates = {'darwin.sh': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/darwin.sh', 'em.mdp': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/em.mdp', 'gromacswrapper.cfg': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/gromacswrapper.cfg', 'gromacswrapper_465.cfg': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/gromacswrapper_465.cfg', 'local.sh': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/local.sh', 'md_CHARMM27.mdp': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/md_CHARMM27.mdp', 'md_CHARMM27_gpu.mdp': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/md_CHARMM27_gpu.mdp', 'md_G43a1.mdp': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/md_G43a1.mdp', 'md_OPLSAA.mdp': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/md_OPLSAA.mdp', 'md_OPLSAA_gpu.mdp': '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/md_OPLSAA_gpu.mdp'}

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

	
gromacs.config.qscript_template = '/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/local.sh'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

gromacs.environment – Run time modification of behaviour

Some aspects of GromacsWrapper can be determined globally. The
corresponding flags Flag are set in the environment (think of
them like environment variables). They are accessible through the
pseudo-dictionary gromacs.environment.flags.

The entries appear as ‘name’-‘value’ pairs. Flags check values and illegal ones
raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. Documentation on all flags can be obtained with

print gromacs.environment.flags.doc()

List of GromacsWrapper flags with default values

	
class gromacs.environment.flagsDocs

	capture_output = False

Select if Gromacs command output is always captured.

>>> flags['capture_output'] = False

By default a GromacsCommand will
direct STDOUT and STDERR output from the command itself to
the screen (through /dev/stdout and /dev/stderr). When
running the command, this can be changed with the keywords
stdout and stderr as described in gromacs.core
and Command.

If this flag is set to True then by default STDOUT and
STDERR are captured as if one had set

stdout=False, stderr=False

Explicitly setting stdout and/or stderr overrides the
behaviour described above.

If set to the special keyword "file"` then the command
writes to the file whose name is given by
``flags['capture_output_filename']. This file is
over-written for each command. In this way one can
investigate the output from the last command (presumably
because it failed). STDOUT and STDERR are captured into
this file by default. STDERR is printed first and then
STDOUT, which does not necessarily reflect the order of
output one would see on the screen.

The default is False.

capture_output_filename = ‘gromacs_captured_output.txt’

Name of the file that captures output if ``flags[‘capture_output’] = “file”

>>> flags['capture_output_filename'] = 'gromacs_captured_output.txt'

This is an experimental feature. The default is ‘gromacs_captured_output.txt’.

Classes

	
gromacs.environment.flags

	

	
class gromacs.environment.Flags(*args)

	Global registry of flags. Acts like a dict for item access.

There are a number flags defined that influence how MDAnalysis behaves. They are
accessible through the pseudo-dictionary

gromacs.environment.flags

The entries appear as ‘name’-‘value’ pairs. Flags check values and illegal ones
raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. Documentation on all flags can be obtained with

print gromacs.environment.flags.__doc__

New flags are added with the Flags.register() method which takes a new Flag
instance as an argument.

For developers: Initialize Flags registry with a list of Flag instances.

	
doc()

	Shows doc strings for all flags.

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
itervalues() → an iterator over the values of D

	

	
register(flag)

	Register a new Flag instance with the Flags registry.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update(*flags)

	Update Flags registry with a list of Flag instances.

	
values() → list of D's values

	

	
class gromacs.environment.Flag(name, default, mapping=None, doc=None)

	A Flag, essentially a variable that knows its default and legal values.

Create a new flag which will be registered with FLags.

newflag = Flag(name,default,mapping,doc)

	Arguments

	
	name

	name of the flag, must be a legal python name

	default

	default value

	mapping

	dict that maps allowed input values to canonical values;
if None then no argument checking will be performed and
all values are directly set.

	doc

	doc string; may contain string interpolation mappings for:

%%(name)s name of the flag
%%(default)r default value
%%(value)r current value
%%(mapping)r mapping

Doc strings are generated dynamically and reflect the current state.

	
prop()

	Use this for property(**flag.prop())

gromacs.formats – Accessing various files

This module contains classes that represent data files on
disk. Typically one creates an instance and

	reads from a file using a read() method, or

	populates the instance (in the simplest case with a set()
method) and the uses the write() method to write the data to
disk in the appropriate format.

For function data there typically also exists a plot() method
which produces a graph (using matplotlib).

The module defines some classes that are used in other modules; they
do not make use of gromacs.tools or gromacs.cbook and
can be safely imported at any time.

Contents

	Simple xmgrace XVG file format

	Gromacs XPM file format

	Gromacs parameter MDP file format

	Gromacs NDX index file format

	Gromacs Preprocessed Topology (top) Parser

	gromacs.fileformats.convert — converting entries of tables

Simple xmgrace XVG file format

Gromacs produces graphs in the xmgrace [http://plasma-gate.weizmann.ac.il/Grace/] (“xvg”) format. These are
simple multi-column data files. The class XVG encapsulates
access to such files and adds a number of methods to access the data
(as NumPy arrays), compute aggregates, or quickly plot it.

The XVG class is useful beyond reading xvg files. With the
array keyword or the XVG.set() method one can load data from
an array instead of a file. The array should be simple “NXY” data
(typically: first column time or position, further columns scalar
observables). The data should be a NumPy numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] array
a with shape [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape] (M, N) where M-1 is the
number of observables and N the number of observations, e.g.the
number of time points in a time series. a[0] is the time or
position and a[1:] the M-1 data columns.

Errors

The XVG.error attribute contains the statistical error for
each timeseries. It is computed from the standard deviation of the
fluctuations from the mean and their correlation time. The parameters
for the calculations of the correlation time are set with
XVG.set_correlparameters().

See also

numkit.timeseries.tcorrel()

Plotting

The XVG.plot() and XVG.errorbar() methods are set up to
produce graphs of multiple columns simultaneously. It is
typically assumed that the first column in the selected (sub)array
contains the abscissa (“x-axis”) of the graph and all further columns
are plotted against the first one.

Data selection

Plotting from XVG is fairly flexible as one can always pass
the columns keyword to select which columns are to be
plotted. Assuming that the data contains [t, X1, X2, X3], then one
can

	plot all observable columns (X1 to X3) against t:

xvg.plot()

	plot only X2 against t:

xvg.plot(columns=[0,2])

	plot X2 and X3 against t:

xvg.plot(columns=[0,2,3])

	plot X1 against X3:

xvg.plot(columns=[2,3])

Coarse grainining of data

It is also possible to coarse grain the data for plotting (which
typically results in visually smoothing the graph because noise is
averaged out).

Currently, two alternative algorithms to produce “coarse grained”
(decimated) graphs are implemented and can be selected with the
method keyword for the plotting functions in conjuction with
maxpoints (the number of points to be plotted):

	mean histogram (default) — bin the data (using
numkit.timeseries.regularized_function() and compute the
mean for each bin. Gives the exact number of desired points
but the time data are whatever the middle of the bin is.

	smooth subsampled — smooth the data with a running average
(other windows like Hamming are also possible) and then pick data
points at a stepsize compatible with the number of data points
required. Will give exact times but not the exact number of data
points.

For simple test data, both approaches give very similar output.

For the special case of periodic data such as angles, one can use the
circular mean (“circmean”) to coarse grain. In this case, jumps across
the -180º/+180º boundary are added as masked datapoints and no line is
drawn across the jump in the plot. (Only works with the simple
XVG.plot() method at the moment, errorbars or range plots are
not implemented yet.)

See also

XVG.decimate()

Examples

In this example we generate a noisy time series of a sine wave. We
store the time, the value, and an error. (In a real example, the
value might be the mean over multiple observations and the error might
be the estimated error of the mean.)

>>> import numpy as np
>>> import gromacs.formats
>>> X = np.linspace(-10,10,50000)
>>> yerr = np.random.randn(len(X))*0.05
>>> data = np.vstack((X, np.sin(X) + yerr, np.random.randn(len(X))*0.05))
>>> xvg = gromacs.formats.XVG(array=data)

Plot value for all time points:

>>> xvg.plot(columns=[0,1], maxpoints=None, color="black", alpha=0.2)

Plot bin-averaged (decimated) data with the errors, over 1000 points:

>>> xvg.errorbar(maxpoints=1000, color="red")

(see output in Figure Plot of Raw vs Decimated data)

[image: plot of a raw noisy sin(x) graph versus its decimated version]
Plot of Raw vs Decimated data. Example of plotting raw data
(sine on 50,000 points, gray) versus the decimated graph (reduced
to 1000 points, red line). The errors were also decimated and
reduced to the errors within the 5% and the 95% percentile. The
decimation is carried out by histogramming the data in the desired
number of bins and then the data in each bin is reduced by either
numpy.mean() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean] (for the value) or
scipy.stats.scoreatpercentile() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile] (for errors).

In principle it is possible to use other functions to decimate the
data. For XVG.plot(), the method keyword can be changed (see
XVG.decimate() for allowed method values). For
XVG.errorbar(), the method to reduce the data values (typically
column 1) is fixed to “mean” but the errors (typically columns 2 and 3)
can also be reduced with error_method = “rms”.

If one wants to show the variation of the raw data together with the
decimated and smoothed data then one can plot the percentiles of the
deviation from the mean in each bin:

>>> xvg.errorbar(columns=[0,1,1], maxpoints=1000, color="blue", demean=True)

The demean keyword indicates if fluctuations from the mean are
regularised 1. The method XVG.plot_coarsened()
automates this approach and can plot coarsened data selected by the
columns keyword.

Footnotes

	1

	When error_method = “percentile” is selected for
XVG.errorbar() then demean does not actually
force a regularisation of the fluctuations from the
mean. Instead, the (symmetric) percentiles are computed
on the full data and the error ranges for plotting are
directly set to the percentiles. In this way one can
easily plot the e.g. 10th-percentile to 90th-percentile
band (using keyword percentile = 10).

Classes and functions

	
class gromacs.fileformats.xvg.XVG(filename=None, names=None, array=None, permissive=False, **kwargs)

	Class that represents the numerical data in a grace xvg file.

All data must be numerical. NAN and INF values are
supported via python’s float() builtin function.

The array attribute can be used to access the the
array once it has been read and parsed. The ma
attribute is a numpy masked array (good for plotting).

Conceptually, the file on disk and the XVG instance are considered the same
data. Whenever the filename for I/O (XVG.read() and XVG.write()) is
changed then the filename associated with the instance is also changed to reflect
the association between file and instance.

With the permissive = True flag one can instruct the file reader to skip
unparseable lines. In this case the line numbers of the skipped lines are stored
in XVG.corrupted_lineno.

A number of attributes are defined to give quick access to simple statistics such as

	mean: mean of all data columns

	std: standard deviation

	min: minimum of data

	max: maximum of data

	error: error on the mean, taking correlation times into
account (see also XVG.set_correlparameters())

	tc: correlation time of the data (assuming a simple
exponential decay of the fluctuations around the mean)

These attributes are numpy arrays that correspond to the data columns,
i.e. :attr:`XVG.array`[1:].

Note

	Only simple XY or NXY files are currently supported, not
Grace files that contain multiple data sets separated by ‘&’.

	Any kind of formatting (i.e. xmgrace commands) is discarded.

Initialize the class from a xvg file.

	Arguments

	
	filename

	is the xvg file; it can only be of type XY or
NXY. If it is supplied then it is read and parsed
when XVG.array is accessed.

	names

	optional labels for the columns (currently only
written as comments to file); string with columns
separated by commas or a list of strings

	array

	read data from array (see XVG.set())

	permissive

	False raises a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] and logs and errior
when encountering data lines that it cannot parse.
True ignores those lines and logs a warning—this is
a risk because it might read a corrupted input file [False]

	stride

	Only read every stride line of data [1].

	savedata

	True includes the data (XVG.array` and
associated caches) when the instance is pickled (see
pickle [https://docs.python.org/3/library/pickle.html#module-pickle]); this is oftens not desirable because the
data are already on disk (the xvg file filename) and the
resulting pickle file can become very big. False omits
those data from a pickle. [False]

	metadata

	dictionary of metadata, which is not touched by the class

	
array

	Represent xvg data as a (cached) numpy array.

The array is returned with column-first indexing, i.e. for a data file with
columns X Y1 Y2 Y3 … the array a will be a[0] = X, a[1] = Y1, … .

	
decimate(method, a, maxpoints=10000, **kwargs)

	Decimate data a to maxpoints using method.

If a is a 1D array then it is promoted to a (2, N) array
where the first column simply contains the index.

If the array contains fewer than maxpoints points or if
maxpoints is None then it is returned as it is. The
default for maxpoints is 10000.

Valid values for the reduction method:

	“mean”, uses XVG.decimate_mean() to coarse grain by
averaging the data in bins along the time axis

	“circmean”, uses XVG.decimate_circmean() to coarse
grain by calculating the circular mean of the data in bins
along the time axis. Use additional keywords low and
high to set the limits. Assumes that the data are in
degrees.

	“min” and “max* select the extremum in each bin

	“rms”, uses XVG.decimate_rms() to coarse grain by
computing the root mean square sum of the data in bins
along the time axis (for averaging standard deviations and
errors)

	“percentile” with keyword per: XVG.decimate_percentile()
reduces data in each bin to the percentile per

	“smooth”, uses XVG.decimate_smooth() to subsample
from a smoothed function (generated with a running average
of the coarse graining step size derived from the original
number of data points and maxpoints)

	Returns

	numpy array (M', N') from a (M', N) array
with M' == M (except when M == 1, see above)
and N' <= N (N' is maxpoints).

	
decimate_circmean(a, maxpoints, **kwargs)

	Return data a circmean-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates
the weighted circular mean in each bin as the decimated data,
using
numkit.timeseries.circmean_histogrammed_function(). The
coarse grained time in the first column contains the centers
of the histogram time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

Keywords low and high can be used to set the
boundaries. By default they are [-pi, +pi].

This method returns a masked array where jumps are flagged
by an insertion of a masked point.

Note

Assumes that the first column is time and that the data are
in degrees.

Warning

Breaking of arrays only works properly with a two-column
array because breaks are only inserted in the x-column
(a[0]) where y1 = a[1] has a break.

	
decimate_error(a, maxpoints, **kwargs)

	Return data a error-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates an
error estimate in each bin as the decimated data, using
numkit.timeseries.error_histogrammed_function(). The
coarse grained time in the first column contains the centers
of the histogram time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

See also

numkit.timeseries.tcorrel()

Note

Assumes that the first column is time.

Does not work very well because often there are too few
datapoints to compute a good autocorrelation function.

	
decimate_max(a, maxpoints, **kwargs)

	Return data a max-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates
the maximum in each bin as the decimated data, using
numkit.timeseries.max_histogrammed_function(). The coarse grained
time in the first column contains the centers of the histogram
time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

Note

Assumes that the first column is time.

	
decimate_mean(a, maxpoints, **kwargs)

	Return data a mean-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates
the weighted average in each bin as the decimated data, using
numkit.timeseries.mean_histogrammed_function(). The coarse grained
time in the first column contains the centers of the histogram
time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

Note

Assumes that the first column is time.

	
decimate_min(a, maxpoints, **kwargs)

	Return data a min-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates
the minimum in each bin as the decimated data, using
numkit.timeseries.min_histogrammed_function(). The coarse grained
time in the first column contains the centers of the histogram
time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

Note

Assumes that the first column is time.

	
decimate_percentile(a, maxpoints, **kwargs)

	Return data a percentile-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates
the percentile per in each bin as the decimated data, using
numkit.timeseries.percentile_histogrammed_function(). The
coarse grained time in the first column contains the centers
of the histogram time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

Note

Assumes that the first column is time.

	Keywords

	

	per

	percentile as a percentage, e.g. 75 is the value that splits
the data into the lower 75% and upper 25%; 50 is the median [50.0]

See also

numkit.timeseries.regularized_function() with scipy.stats.scoreatpercentile() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile]

	
decimate_rms(a, maxpoints, **kwargs)

	Return data a rms-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates
the root mean square sum in each bin as the decimated data,
using numkit.timeseries.rms_histogrammed_function(). The coarse
grained time in the first column contains the centers of the
histogram time.

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of maxpoints points is returned.

Note

Assumes that the first column is time.

	
decimate_smooth(a, maxpoints, window='flat')

	Return smoothed data a decimated on approximately maxpoints points.

	Produces a smoothed graph using the smoothing window window;
“flat” is a running average.

	select points at a step size approximatelt producing maxpoints

If a contains <= maxpoints then a is simply returned;
otherwise a new array of the same dimensions but with a
reduced number of points (close to maxpoints) is returned.

Note

Assumes that the first column is time (which will never
be smoothed/averaged), except when the input array a is
1D and therefore to be assumed to be data at equidistance
timepoints.

TODO:
- Allow treating the 1st column as data

	
error

	Error on the mean of the data, taking the correlation time into account.

See [FrenkelSmit2002] p526 [http://books.google.co.uk/books?id=XmyO2oRUg0cC&pg=PA526]:

error = sqrt(2*tc*acf[0]/T)

where acf() is the autocorrelation function of the fluctuations around
the mean, y-<y>, tc is the correlation time, and T the total length of
the simulation.

	FrenkelSmit2002

	D. Frenkel and B. Smit, Understanding
Molecular Simulation. Academic Press, San
Diego 2002

	
errorbar(**kwargs)

	errorbar plot for a single time series with errors.

Set columns keyword to select [x, y, dy] or [x, y, dx, dy],
e.g. columns=[0,1,2]. See XVG.plot() for
details. Only a single timeseries can be plotted and the user
needs to select the appropriate columns with the columns
keyword.

By default, the data are decimated (see XVG.plot()) for
the default of maxpoints = 10000 by averaging data in
maxpoints bins.

x,y,dx,dy data can plotted with error bars in the x- and
y-dimension (use filled = False).

For x,y,dy use filled = True to fill the region between
y±dy. fill_alpha determines the transparency of the fill
color. filled = False will draw lines for the error
bars. Additional keywords are passed to
pylab.errorbar().

By default, the errors are decimated by plotting the 5% and
95% percentile of the data in each bin. The percentile can be
changed with the percentile keyword; e.g. percentile = 1
will plot the 1% and 99% perentile (as will percentile =
99).

The error_method keyword can be used to compute errors as
the root mean square sum (error_method = “rms”) across each
bin instead of percentiles (“percentile”). The value of the
keyword demean is applied to the decimation of error data
alone.

See also

XVG.plot() lists keywords common to both methods.

	
ma

	Represent data as a masked array.

The array is returned with column-first indexing, i.e. for a data file with
columns X Y1 Y2 Y3 … the array a will be a[0] = X, a[1] = Y1, … .

inf and nan are filtered via numpy.isfinite().

	
max

	Maximum of the data columns.

	
mean

	Mean value of all data columns.

	
min

	Minimum of the data columns.

	
parse(stride=None)

	Read and cache the file as a numpy array.

Store every stride line of data; if None then the class default is used.

The array is returned with column-first indexing, i.e. for a data file with
columns X Y1 Y2 Y3 … the array a will be a[0] = X, a[1] = Y1, … .

	
plot(**kwargs)

	Plot xvg file data.

The first column of the data is always taken as the abscissa
X. Additional columns are plotted as ordinates Y1, Y2, …

In the special case that there is only a single column then this column
is plotted against the index, i.e. (N, Y).

	Keywords

	
	columnslist

	Select the columns of the data to be plotted; the list
is used as a numpy.array extended slice. The default is
to use all columns. Columns are selected after a transform.

	transformfunction

	function transform(array) -> array which transforms
the original array; must return a 2D numpy array of
shape [X, Y1, Y2, …] where X, Y1, … are column
vectors. By default the transformation is the
identity [lambda x: x].

	maxpointsint

	limit the total number of data points; matplotlib has issues processing
png files with >100,000 points and pdfs take forever to display. Set to
None if really all data should be displayed. At the moment we simply
decimate the data at regular intervals. [10000]

	method

	method to decimate the data to maxpoints, see XVG.decimate()
for details

	color

	single color (used for all plots); sequence of colors
(will be repeated as necessary); or a matplotlib
colormap (e.g. “jet”, see matplotlib.cm). The
default is to use the XVG.default_color_cycle.

	ax

	plot into given axes or create new one if None [None]

	kwargs

	All other keyword arguments are passed on to matplotlib.pyplot.plot().

	Returns

	
	ax

	axes instance

	
plot_coarsened(**kwargs)

	Plot data like XVG.plot() with the range of all data shown.

Data are reduced to maxpoints (good results are obtained
with low values such as 100) and the actual range of observed
data is plotted as a translucent error band around the mean.

Each column in columns (except the abscissa, i.e. the first
column) is decimated (with XVG.decimate()) and the range
of data is plotted alongside the mean using
XVG.errorbar() (see for arguments). Additional
arguments:

	Kewords

	
	maxpoints

	number of points (bins) to coarsen over

	color

	single color (used for all plots); sequence of colors
(will be repeated as necessary); or a matplotlib
colormap (e.g. “jet”, see matplotlib.cm). The
default is to use the XVG.default_color_cycle.

	method

	Method to coarsen the data. See XVG.decimate()

The demean keyword has no effect as it is required to be True.

See also

XVG.plot(), XVG.errorbar() and XVG.decimate()

	
read(filename=None)

	Read and parse xvg file filename.

	
set(a)

	Set the array data from a (i.e. completely replace).

No sanity checks at the moment…

	
set_correlparameters(**kwargs)

	Set and change the parameters for calculations with correlation functions.

The parameters persist until explicitly changed.

	Keywords

	
	nstep

	only process every nstep data point to speed up the FFT; if
left empty a default is chosen that produces roughly 25,000 data
points (or whatever is set in ncorrel)

	ncorrel

	If no nstep is supplied, aim at using ncorrel data points for
the FFT; sets XVG.ncorrel [25000]

	force

	force recalculating correlation data even if cached values are
available

	kwargs

	see numkit.timeseries.tcorrel() for other options

	
std

	Standard deviation from the mean of all data columns.

	
tc

	Correlation time of the data.

See XVG.error() for details.

	
write(filename=None)

	Write array to xvg file filename in NXY format.

Note

Only plain files working at the moment, not compressed.

	
gromacs.fileformats.xvg.break_array(a, threshold=3.141592653589793, other=None)

	Create a array which masks jumps >= threshold.

Extra points are inserted between two subsequent values whose
absolute difference differs by more than threshold (default is
pi).

Other can be a secondary array which is also masked according to
a.

Returns (a_masked, other_masked) (where other_masked can be
None)

Gromacs XPM file format

Gromacs stores matrix data in the xpm file format. This implementation
of a Python reader is based on Tsjerk Wassenaar’s post to gmx-users
numerical matrix from xpm file [http://lists.gromacs.org/pipermail/gmx-users/2010-October/054557.html] (Mon Oct 4 13:05:26 CEST 2010). This
version returns a NumPy array and can guess an appropriate dtype for
the array.

Classes

	
class gromacs.fileformats.xpm.XPM(filename=None, **kwargs)

	Class to make a Gromacs XPM matrix available as a NumPy numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

The data is available in the attribute XPM.array.

Note

By default, the rows (2nd dimension) in the XPM.array
are re-ordered so that row 0 (i.e. array[:,0] corresponds
to the first residue/hydrogen bond/etc. The original xpm matrix
is obtained for reverse = False. The XPM reader
always reorders the XPM.yvalues (obtained from the xpm
file) to match the order of the rows.

Initialize xpm structure.

	Arguments

	
	filename

	read from mdp file

	autoconvert

	try to guess the type of the output array from the
colour legend [True]

	reverse

	reverse rows (2nd dimension): re-orders the rows so that
the first row corresponds e.g. to the first residue or
first H-bonds and not the last) [True]

	
xvalues

	Values of on the x-axis, extracted from the xpm file.

	
yvalues

	Values of on the y-axis, extracted from the xpm file. These are
in the same order as the rows in the xpm matrix. If reverse =
False then this is typically a descending list of numbers
(highest to lowest residue number, index number, etc). For
reverse = True it is resorted accordingly.

	
array

	XPM matrix as a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

The attribute itself cannot be assigned a different array but
the contents of the array can be modified.

	
col(c)

	Parse colour specification

	
parse()

	Parse the xpm file and populate XPM.array.

	
read(filename=None)

	Read and parse mdp file filename.

	
static uncomment(s)

	Return string s with C-style comments /* … */ removed.

	
static unquote(s)

	Return string s with quotes " removed.

Example: Analysing H-bonds

Run gromacs.g_hbond() to produce the existence map (and the log
file for the atoms involved in the bonds; the ndx file is also
useful):

gromacs.g_hbond(s=TPR, f=XTC, g="hbond.log", hbm="hb.xpm", hbn="hb.ndx")

Load the XPM:

hb = XPM("hb.xpm", reverse=True)

Calculate the fraction of time that each H-bond existed:

hb_fraction = hb.array.mean(axis=0)

Get the descriptions of the bonds:

desc = [line.strip() for line in open("hbond.log") if not line.startswith('#')]

Note

It is important that reverse=True is set so that the rows in
the xpm matrix are brought in the same order as the H-bond
labels.

Show the results:

print "\n".join(["%-40s %4.1f%%" % p for p in zip(desc, 100*hb_fraction)])

See also

gromacs.analysis.plugins.hbonds

Gromacs parameter MDP file format

The .mdp file [http://www.gromacs.org/Documentation/File_Formats/.mdp_File] contains a list of keywords that are used to set up a
simulation with Grompp. The class MDP
parses this file and provides access to the keys and values as ordered
dictionary.

	
class gromacs.fileformats.mdp.MDP(filename=None, autoconvert=True, **kwargs)

	Class that represents a Gromacs mdp run input file.

The MDP instance is an ordered dictionary.

	Parameter names are keys in the dictionary.

	Comments are sequentially numbered with keys Comment0001,
Comment0002, …

	Empty lines are similarly preserved as Blank0001, ….

When writing, the dictionary is dumped in the recorded order to a
file. Inserting keys at a specific position is not possible.

Currently, comments after a parameter on the same line are
discarded. Leading and trailing spaces are always stripped.

See also

For editing a mdp file one can also use
gromacs.cbook.edit_mdp() (which works like a
poor replacement for sed).

Initialize mdp structure.

	Arguments

	
	filename

	read from mdp file

	autoconvertboolean

	True converts numerical values to python numerical types;
False keeps everything as strings [True]

	kwargs

	Populate the MDP with key=value pairs. (NO SANITY CHECKS; and also
does not work for keys that are not legal python variable names such
as anything that includes a minus ‘-‘ sign or starts with a number).

	
read(filename=None)

	Read and parse mdp file filename.

	
write(filename=None, skipempty=False)

	Write mdp file to filename.

	Keywords

	
	filename

	output mdp file; default is the filename the mdp
was read from

	skipemptyboolean

	True removes any parameter lines from output that
contain empty values [False]

Note

Overwrites the file that the mdp was read from if no
filename supplied.

Gromacs NDX index file format

The .ndx file [http://www.gromacs.org/Documentation/File_Formats/.ndx_File] contains lists of atom indices that are grouped in
sections by group names. The classes NDX and
uniqueNDX can parse such ndx files and provide convenient
access to the individual groups.

	
class gromacs.fileformats.ndx.NDX(filename=None, **kwargs)

	Gromacs index file.

Represented as a ordered dict where the keys are index group names and
values are numpy arrays of atom numbers.

Use the NDX.read() and NDX.write() methods for
I/O. Access groups by name via the NDX.get() and
NDX.set() methods.

Alternatively, simply treat the NDX instance as a
dictionary. Setting a key automatically transforms the new value
into a integer 1D numpy array (not a set, as would be the
make_ndx behaviour).

Note

The index entries themselves are ordered and can contain
duplicates so that output from NDX can be easily used for
g_dih and friends. If you need set-like behaviour
you will have do use gromacs.formats.uniqueNDX or
gromacs.cbook.IndexBuilder (which uses
make_ndx throughout).

Example

Read index file, make new group and write to disk:

ndx = NDX()
ndx.read('system.ndx')
print ndx['Protein']
ndx['my_group'] = [2, 4, 1, 5] # add new group
ndx.write('new.ndx')

Or quicker (replacing the input file system.ndx):

ndx = NDX('system') # suffix .ndx is automatically added
ndx['chi1'] = [2, 7, 8, 10]
ndx.write()

	
get(name)

	Return index array for index group name.

	
groups

	Return a list of all groups.

	
ndxlist

	Return a list of groups in the same format as gromacs.cbook.get_ndx_groups().

	Format:

	[{‘name’: group_name, ‘natoms’: number_atoms, ‘nr’: # group_number}, ….]

	
read(filename=None)

	Read and parse index file filename.

	
set(name, value)

	Set or add group name as a 1D numpy array.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
size(name)

	Return number of entries for group name.

	
sizes

	Return a dict with group names and number of entries,

	
write(filename=None, ncol=15, format='%6d')

	Write index file to filename (or overwrite the file that the index was read from)

	
class gromacs.fileformats.ndx.uniqueNDX(filename=None, **kwargs)

	Index that behaves like make_ndx, i.e. entries behaves as sets,
not lists.

The index lists behave like sets:
- adding sets with ‘+’ is equivalent to a logical OR: x + y == “x | y”
- subtraction ‘-‘ is AND: x - y == “x & y”
- see join() for ORing multiple groups (x+y+z+…)

Example

I = uniqueNDX('system.ndx')
I['SOLVENT'] = I['SOL'] + I['NA+'] + I['CL-']

	
join(*groupnames)

	Return an index group that contains atoms from all groupnames.

The method will silently ignore any groups that are not in the
index.

Example

Always make a solvent group from water and ions, even if not
all ions are present in all simulations:

I['SOLVENT'] = I.join('SOL', 'NA+', 'K+', 'CL-')

	
class gromacs.fileformats.ndx.IndexSet

	set which defines ‘+’ as union (OR) and ‘-‘ as intersection (AND).

Gromacs Preprocessed Topology (top) Parser

New in version 0.5.0.

Gromacs can produce preprocessed topology files that contain all topology information (generated using grompp -pp processed.top).
Reading the regular topol.top is not supported, for now, since the #include statements are not handled.
The TOP parser can read an write processed.top files.
The TOP also provides an interface to modify the force-field terms and parameters in a programmatic way.
Example applications involve system preparation for Hamiltonian-replica exchange (REST2 with lambda scaling), and automated force-field parametrization.

	Gromacs TOP file format

	Gromacs TOP - BLOCKS boiler-plate code

Gromacs TOP file format

Classes

	
class gromacs.fileformats.top.TOP(fname)

	Class to make a TOP object from a GROMACS processed.top file

The force-field and molecules data is exposed as python object.

Note

Only processed.top files generated by GROMACS ‘grompp -pp’
are supported - the usual topol.top files are not supported (yet!)

Initialize the TOP structure.

	Arguments

	
	fname

	name of the processed.top file

	
write(filename)

	Write the TOP object to a file

	
class gromacs.fileformats.top.SystemToGroTop(system, outfile='output.top', multiple_output=False)

	Converter class - represent TOP objects as GROMACS topology file.

Initialize GROMACS topology writer.

	Arguments

	
	system

	blocks.System object, containing the topology

	outfile

	name of the file to write to

	multiple_output

	if True, write moleculetypes to separate files, named mol_MOLNAME.itp (default: False)

	
assemble_topology()

	Call the various member self._make_* functions to convert the topology object into a string

History

Sources adapted from code by Reza Salari https://github.com/resal81/PyTopol

Example: Read a processed.top file and scale charges

Run grompp -pp to produce a processed.top from conf.gro, grompp.mdp and topol.top files:

$ grompp -pp

This file now containts all the force-field information:

from gromacs.fileformats import TOP
top = TOP("processed.top")

Scale the LJ epsilon by an arbitrary number, here 0.9

scaling = 0.9
for at in top.atomtypes:
 at.gromacs['param']['lje'] *= scaling

Write out the scaled down topology:

top.write("output.top")

Note

You can use this to prepare a series of top files for Hamiltonian Replica
Exchange (HREX) simulations. See scripts/gw-partial_tempering.py for an example.

Gromacs TOP - BLOCKS boiler-plate code

Classes

	
class gromacs.fileformats.blocks.System

	Top-level class containing molecule topology.

Contains all the parameter types (AtomTypes, BondTypes, …)
and molecules.

	
class gromacs.fileformats.blocks.Molecule

	Class that represents a Molecule

Contains all the molecule attributes: atoms, bonds, angles dihedrals.
Also contains settle, cmap and exclusion sections, if present.

	
anumb_to_atom(anumb)

	Returns the atom object corresponding to an atom number

	
renumber_atoms()

	Reset the molecule’s atoms number to be 1-indexed

	
class gromacs.fileformats.blocks.Atom

	Class that represents an Atom

Contains only the simplest atom attributes, that are contained like in
section example below.

Molecule cantains an atoms that’s a list-container for
Atom instances.

	
class gromacs.fileformats.blocks.Param(format)

	Class that represents an abstract Parameter.

This class is the parent to AtomType, BondType and all the other parameter types.

The class understands a parameter line and that a comment that may follow.
CMapType is an exception (it’s a multi-line parameter).

convert() provides a rudimentary support for parameter unit conversion between
GROMACS and CHARMM notation: change kJ/mol into kcal/mol and nm into Angstrom.

disabled for supressing output when writing-out to a file.

	
class gromacs.fileformats.blocks.AtomType(format)

	

	
class gromacs.fileformats.blocks.BondType(format)

	

	
class gromacs.fileformats.blocks.AngleType(format)

	

	
class gromacs.fileformats.blocks.DihedralType(format)

	

	
class gromacs.fileformats.blocks.ImproperType(format)

	

	
class gromacs.fileformats.blocks.CMapType(format)

	

	
class gromacs.fileformats.blocks.InteractionType(format)

	

	
class gromacs.fileformats.blocks.SettleType(format)

	

	
class gromacs.fileformats.blocks.ConstraintType(format)

	

	
class gromacs.fileformats.blocks.NonbondedParamType(format)

	

	
class gromacs.fileformats.blocks.VirtualSites3Type(format)

	

	
class gromacs.fileformats.blocks.Exclusion

	Class to define non-interacting pairs of atoms, or “exclusions”.

Note

Does not inherit from Param unlike other classes in blocks

History

Sources adapted from code by Reza Salari https://github.com/resal81/PyTopol

gromacs.fileformats.convert — converting entries of tables

The Autoconverter converts input values to appropriate Python
types.

It is mainly used by gromacs.fileformats.xpm.XPM
to automagically generate useful NumPy arrays from xpm files. Custom
conversions beyond the default ones in Autoconverter can be
provided with the constructor keyword mapping.

See also

The Autoconverter class was taken and slightly adapted from
recsql.converter in RecSQL [http://orbeckst.github.com/RecSQL/].

	
class gromacs.fileformats.convert.Autoconverter(mode='fancy', mapping=None, active=True, sep=False, **kwargs)

	Automatically convert an input value to a special python object.

The Autoconverter.convert() method turns the value into a special
python value and casts strings to the “best” type (see besttype()).

The defaults for the conversion of a input field value to a
special python value are:

	value

	python

	‘---‘

	None

	‘’

	None

	‘True’

	True

	‘x’

	True

	‘X’

	True

	‘yes’

	True

	‘Present’

	True

	‘False’

	False

	‘-‘

	False

	‘no’

	False

	‘None’

	False

	‘none’

	False

If the sep keyword is set to a string instead of False then
values are split into tuples. Probably the most convenient way to
use this is to set sep = True (or None) because this
splits on all white space whereas sep = ‘ ‘ would split multiple
spaces.

Example

	With sep = True: ‘foo bar 22 boing ---‘ –> (‘foo’, ‘bar’, 22, ‘boing’, None)

	With sep = ‘,’: 1,2,3,4 –> (1,2,3,4)

Initialize the converter.

	Arguments

	
	mode

	defines what the converter does

	“simple”

	convert entries with besttype()

	“singlet”

	convert entries with besttype() and apply
mappings

	“fancy”

	first splits fields into lists, tries mappings,
and does the stuff that “singlet” does

	“unicode”

	convert all entries with to_unicode()

	mapping

	any dict-like mapping that supports lookup. If``None`` then the
hard-coded defaults are used

	active or autoconvert

	initial state of the Autoconverter.active toggle.
False deactivates any conversion. [True]

	sep

	character to split on (produces lists); use True or None
(!) to split on all white space.

Changed in version 0.7.0: removed `encoding keyword argument

	
convert(x)

	Convert x (if in the active state)

	
active

	If set to True then conversion takes place; False just
returns besttype() applid to the value.

	
active

	Toggle the state of the Autoconverter. True uses the mode, False does nothing

	
gromacs.fileformats.convert.besttype(x)

	Convert string x to the most useful type, i.e. int, float or unicode string.

If x is a quoted string (single or double quotes) then the quotes
are stripped and the enclosed string returned.

Note

Strings will be returned as Unicode strings (using to_unicode()).

Changed in version 0.7.0: removed `encoding keyword argument

	
gromacs.fileformats.convert.to_unicode(obj)

	Convert obj to unicode (if it can be be converted).

Conversion is only attempted if obj is a string type (as
determined by six.string_types).

Changed in version 0.7.0: removed `encoding keyword argument

gromacs.utilities – Helper functions and classes

The module defines some convenience functions and classes that are
used in other modules; they do not make use of gromacs.tools
or gromacs.cbook and can be safely imported at any time.

Classes

FileUtils provides functions related to filename handling. It
can be used as a base or mixin class. The gromacs.analysis.Simulation
class is derived from it.

	
class gromacs.utilities.FileUtils

	Mixin class to provide additional file-related capabilities.

	
check_file_exists(filename, resolve='exception', force=None)

	If a file exists then continue with the action specified in resolve.

resolve must be one of

	“ignore”

	always return False

	“indicate”

	return True if it exists

	“warn”

	indicate and issue a UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

	“exception”

	raise IOError [https://docs.python.org/3/library/exceptions.html#IOError] if it exists

Alternatively, set force for the following behaviour (which
ignores resolve):

	True

	same as resolve = “ignore” (will allow overwriting of files)

	False

	same as resolve = “exception” (will prevent overwriting of files)

	None

	ignored, do whatever resolve says

	
filename(filename=None, ext=None, set_default=False, use_my_ext=False)

	Supply a file name for the class object.

Typical uses:

fn = filename() ---> <default_filename>
fn = filename('name.ext') ---> 'name'
fn = filename(ext='pickle') ---> <default_filename>'.pickle'
fn = filename('name.inp','pdf') --> 'name.pdf'
fn = filename('foo.pdf',ext='png',use_my_ext=True) --> 'foo.pdf'

The returned filename is stripped of the extension
(use_my_ext=False) and if provided, another extension is
appended. Chooses a default if no filename is given.

Raises a ValueError exception if no default file name is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take
priority over a default ext tension.

Changed in version 0.3.1: An empty string as ext = “” will suppress appending an extension.

	
infix_filename(name, default, infix, ext=None)

	Unless name is provided, insert infix before the extension ext of default.

	
class gromacs.utilities.AttributeDict

	A dictionary with pythonic access to keys as attributes — useful for interactive work.

	
class gromacs.utilities.Timedelta

	Extension of datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta].

Provides attributes ddays, dhours, dminutes, dseconds to measure
the delta in normal time units.

ashours gives the total time in fractional hours.

Functions

Some additional convenience functions that deal with files and
directories:

	
gromacs.utilities.openany(directory[, mode='r'])

	Context manager to open a compressed (bzip2, gzip) or plain file
(uses anyopen()).

	
gromacs.utilities.anyopen(datasource, mode='r', **kwargs)

	Open datasource (gzipped, bzipped, uncompressed) and return a stream.

	Arguments

	
	datasource

	a stream or a filename

	mode

	'r' opens for reading, 'w' for writing [‘r’]

	kwargs

	additional keyword arguments that are passed through to the
actual handler; if these are not appropriate then an
exception will be raised by the handler

	
gromacs.utilities.realpath(*args)

	Join all args and return the real path, rooted at /.

Expands ~ and environment variables such as $HOME.

Returns None if any of the args is none.

	
gromacs.utilities.in_dir(directory[, create=True])

	Context manager to execute a code block in a directory.

	The directory is created if it does not exist (unless
create = False is set)

	At the end or after an exception code always returns to
the directory that was the current directory before entering
the block.

	
gromacs.utilities.find_first(filename, suffices=None)

	Find first filename with a suffix from suffices.

	Arguments

	
	filename

	base filename; this file name is checked first

	suffices

	list of suffices that are tried in turn on the root of filename; can contain the
ext separator (os.path.extsep) or not

	Returns

	The first match or None.

	
gromacs.utilities.withextsep(extensions)

	Return list in which each element is guaranteed to start with os.path.extsep.

	
gromacs.utilities.which(program)

	Determine full path of executable program on PATH.

(Jay at http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python)

New in version 0.5.1.

Functions that improve list processing and which do not treat
strings as lists:

	
gromacs.utilities.iterable(obj)

	Returns True if obj can be iterated over and is not a string.

	
gromacs.utilities.asiterable(obj)

	Returns obj so that it can be iterated over; a string is not treated as iterable

	
gromacs.utilities.firstof(obj)

	Returns the first entry of a sequence or the obj.

Treats strings as single objects.

Functions that help handling Gromacs files:

	
gromacs.utilities.unlink_f(path)

	Unlink path but do not complain if file does not exist.

	
gromacs.utilities.unlink_gmx(*args)

	Unlink (remove) Gromacs file(s) and all corresponding backups.

	
gromacs.utilities.unlink_gmx_backups(*args)

	Unlink (rm) all backup files corresponding to the listed files.

	
gromacs.utilities.number_pdbs(*args, **kwargs)

	Rename pdbs x1.pdb … x345.pdb –> x0001.pdb … x0345.pdb

	Arguments

	
	args: filenames or glob patterns (such as “pdb/md*.pdb”)

	format: format string including keyword num [“%(num)04d”]

Functions that make working with matplotlib [http://matplotlib.sourceforge.net/] easier:

	
gromacs.utilities.activate_subplot(numPlot)

	Make subplot numPlot active on the canvas.

Use this if a simple subplot(numRows, numCols, numPlot)
overwrites the subplot instead of activating it.

	
gromacs.utilities.remove_legend(ax=None)

	Remove legend for axes or gca.

See http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html

Miscellaneous functions:

	
gromacs.utilities.convert_aa_code(x)

	Converts between 3-letter and 1-letter amino acid codes.

	
gromacs.utilities.autoconvert(s)

	Convert input to a numerical type if possible.

	A non-string object is returned as it is

	Try conversion to int, float, str.

Data

	
gromacs.utilities.amino_acid_codes = {'A': 'ALA', 'C': 'CYS', 'D': 'ASP', 'E': 'GLU', 'F': 'PHE', 'G': 'GLY', 'H': 'HIS', 'I': 'ILE', 'K': 'LYS', 'L': 'LEU', 'M': 'MET', 'N': 'ASN', 'P': 'PRO', 'Q': 'GLN', 'R': 'ARG', 'S': 'SER', 'T': 'THR', 'V': 'VAL', 'W': 'TRP', 'Y': 'TYR'}

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

analysis.collections – Handling of groups of simulation instances

This module contains classes and functions that combine multiple
gromacs.analysis.core.Simulation objects. In this way the
same kind of analysis or plotting task can be carried out
simultaneously for all simulations in the collection.

	
class gromacs.collections.Collection

	Multiple objects (organized as a list).

Methods are applied to all objects in the Collection and returned
as new Collection:

>>> from gromacs.analysis.collections import Collection
>>> animals = Collection(['ant', 'boar', 'ape', 'gnu'])
>>> animals.startswith('a')
Collection([True, False, True, False])

Similarly, attributes are returned as a Collection.

Using Collection.save() one can save the whole collection to
disk and restore it later with the Collection.load() method

>>> animals.save('zoo')
>>> arc = Collection()
>>> arc.load('zoo')
>>> arc.load('zoo', append=True)
>>> arc
['ant', 'boar', 'ape', 'gnu', 'ant', 'boar', 'ape', 'gnu']

gromacs.tools – Gromacs commands classes

A Gromacs command class produces an instance of a Gromacs tool command (
gromacs.core.GromacsCommand), any argument or keyword argument
supplied will be used as default values for when the command is run.

Classes has the same name of the corresponding Gromacs tool with the first
letter capitalized and dot and dashes replaced by underscores to make it a
valid python identifier. Gromacs 5 tools are also aliased to their Gromacs 4
tool names (e.g, sasa to g_sas) for backwards compatibility.

The list of tools to be loaded is configured with the tools and groups
options of the ~/.gromacswrapper.cfg file. Guesses are made if these
options are not provided.

In the following example we create two instances of the
gromacs.tools.Trjconv command (which runs the Gromacs trjconv
command):

from gromacs.tools import Trjconv

trjconv = tools.Trjconv()
trjconv_compact = tools.Trjconv(ur='compact', center=True, boxcenter='tric', pbc='mol',
 input=('protein','system'))

The first one, trjconv, behaves as the standard commandline tool but the
second one, trjconv_compact, will by default create a compact
representation of the input data by taking into account the shape of the unit
cell. Of course, the same effect can be obtained by providing the corresponding
arguments to trjconv but by naming the more specific command differently
one can easily build up a library of small tools that will solve a specific,
repeatedly encountered problem reliably. This is particularly helpful when doing
interactive work.

Multi index

It is possible to extend the tool commands and patch in additional
functionality. For example, the GromacsCommandMultiIndex class makes a
command accept multiple index files and concatenates them on the fly; the
behaviour mimics Gromacs’ “multi-file” input that has not yet been enabled for
all tools.

	
class gromacs.tools.GromacsCommandMultiIndex(**kwargs)

	Command class that accept multiple index files.

It works combining multiple index files into a single temporary one so
that tools that do not (yet) support multi index files as input can be
used as if they did.

It creates a new file only if multiple index files are supplied.

	
gromacs.tools.merge_ndx(*args)

	Takes one or more index files and optionally one structure file and
returns a path for a new merged index file.

	Parameters

	args – index files and zero or one structure file

	Returns

	path for the new merged index file

Helpers

	
gromacs.tools.tool_factory(clsname, name, driver, base=<class 'gromacs.core.GromacsCommand'>)

	Factory for GromacsCommand derived types.

	
gromacs.tools.load_v4_tools()

	Load Gromacs 4.x tools automatically using some heuristic.

Tries to load tools (1) in configured tool groups (2) and fails back to
automatic detection from GMXBIN (3) then to a prefilled list.

Also load any extra tool configured in ~/.gromacswrapper.cfg

	Returns

	dict mapping tool names to GromacsCommand classes

	
gromacs.tools.load_v5_tools()

	Load Gromacs 2018/2016/5.x tools automatically using some heuristic.

Tries to load tools (1) using the driver from configured groups (2) and
falls back to automatic detection from GMXBIN (3) then to rough guesses.

In all cases the command gmx help is ran to get all tools available.

	Returns

	dict mapping tool names to GromacsCommand classes

	
gromacs.tools.find_executables(path)

	Find executables in a path.

Searches executables in a directory excluding some know commands
unusable with GromacsWrapper.

	Parameters

	path – dirname to search for

	Returns

	list of executables

	
gromacs.tools.make_valid_identifier(name)

	Turns tool names into valid identifiers.

	Parameters

	name – tool name

	Returns

	valid identifier

	
exception gromacs.tools.GromacsToolLoadingError

	Raised when no Gromacs tool could be found.

Gromacs tools

	
class gromacs.tools.Dyecoupl

	

	
class gromacs.tools.G_spatial

	

	
class gromacs.tools.Sigeps

	

	
class gromacs.tools.Density

	

	
class gromacs.tools.Chi

	

	
class gromacs.tools.G_filter

	

	
class gromacs.tools.Genrestr

	

	
class gromacs.tools.Nmtraj

	

	
class gromacs.tools.Analyze

	

	
class gromacs.tools.Helixorient

	

	
class gromacs.tools.G_sans

	

	
class gromacs.tools.Trjcat

	

	
class gromacs.tools.G_densorder

	

	
class gromacs.tools.G_helixorient

	

	
class gromacs.tools.Velacc

	

	
class gromacs.tools.G_principal

	

	
class gromacs.tools.Spol

	

	
class gromacs.tools.G_densmap

	

	
class gromacs.tools.Confrms

	

	
class gromacs.tools.G_order

	

	
class gromacs.tools.G_nmens

	

	
class gromacs.tools.Grompp

	

	
class gromacs.tools.G_angle

	

	
class gromacs.tools.Editconf

	

	
class gromacs.tools.Bar

	

	
class gromacs.tools.Trjconv

	

	
class gromacs.tools.Clustsize

	

	
class gromacs.tools.G_sgangle

	

	
class gromacs.tools.G_pairdist

	

	
class gromacs.tools.G_dyecoupl

	

	
class gromacs.tools.G_hydorder

	

	
class gromacs.tools.Sasa

	

	
class gromacs.tools.Vanhove

	

	
class gromacs.tools.G_help

	

	
class gromacs.tools.Help

	

	
class gromacs.tools.Solvate

	

	
class gromacs.tools.Hydorder

	

	
class gromacs.tools.Enemat

	

	
class gromacs.tools.Genion

	

	
class gromacs.tools.G_sham

	

	
class gromacs.tools.Polystat

	

	
class gromacs.tools.G_enemat

	

	
class gromacs.tools.G_density

	

	
class gromacs.tools.G_sigeps

	

	
class gromacs.tools.Check

	

	
class gromacs.tools.Select

	

	
class gromacs.tools.Tpbconv

	

	
class gromacs.tools.G_tcaf

	

	
class gromacs.tools.Genbox

	

	
class gromacs.tools.Nmens

	

	
class gromacs.tools.G_rms

	

	
class gromacs.tools.Pairdist

	

	
class gromacs.tools.G_dielectric

	

	
class gromacs.tools.Spatial

	

	
class gromacs.tools.G_anadock

	

	
class gromacs.tools.H2order

	

	
class gromacs.tools.G_disre

	

	
class gromacs.tools.Wham

	

	
class gromacs.tools.Nmr

	

	
class gromacs.tools.Mdrun

	

	
class gromacs.tools.Densorder

	

	
class gromacs.tools.G_confrms

	

	
class gromacs.tools.Trjorder

	

	
class gromacs.tools.G_view

	

	
class gromacs.tools.Awh

	

	
class gromacs.tools.G_dos

	

	
class gromacs.tools.G_hbond

	

	
class gromacs.tools.Tune_pme

	

	
class gromacs.tools.Anadock

	

	
class gromacs.tools.G_rdf

	

	
class gromacs.tools.Rmsf

	

	
class gromacs.tools.Sans

	

	
class gromacs.tools.Rmsdist

	

	
class gromacs.tools.Saltbr

	

	
class gromacs.tools.G_rama

	

	
class gromacs.tools.Disre

	

	
class gromacs.tools.Rdf

	

	
class gromacs.tools.Gmxdump

	

	
class gromacs.tools.Gangle

	

	
class gromacs.tools.G_h2order

	

	
class gromacs.tools.G_traj

	

	
class gromacs.tools.Anaeig

	

	
class gromacs.tools.Dump

	

	
class gromacs.tools.G_rotacf

	

	
class gromacs.tools.Energy

	

	
class gromacs.tools.G_lie

	

	
class gromacs.tools.G_x2top

	

	
class gromacs.tools.G_nmeig

	

	
class gromacs.tools.Rotmat

	

	
class gromacs.tools.G_dist

	

	
class gromacs.tools.G_gyrate

	

	
class gromacs.tools.Gmxcheck

	

	
class gromacs.tools.G_mindist

	

	
class gromacs.tools.G_sas

	

	
class gromacs.tools.Convert_tpr

	

	
class gromacs.tools.G_nmtraj

	

	
class gromacs.tools.Helix

	

	
class gromacs.tools.Densmap

	

	
class gromacs.tools.Msd

	

	
class gromacs.tools.Sham

	

	
class gromacs.tools.G_covar

	

	
class gromacs.tools.Saxs

	

	
class gromacs.tools.Bundle

	

	
class gromacs.tools.Pdb2gmx

	

	
class gromacs.tools.Mindist

	

	
class gromacs.tools.G_helix

	

	
class gromacs.tools.Mk_angndx

	

	
class gromacs.tools.G_mdmat

	

	
class gromacs.tools.Sorient

	

	
class gromacs.tools.G_nmr

	

	
class gromacs.tools.Insert_molecules

	

	
class gromacs.tools.Morph

	

	
class gromacs.tools.G_energy

	

	
class gromacs.tools.Filter

	

	
class gromacs.tools.G_rmsdist

	

	
class gromacs.tools.Gyrate

	

	
class gromacs.tools.G_clustsize

	

	
class gromacs.tools.Mdmat

	

	
class gromacs.tools.G_dipoles

	

	
class gromacs.tools.Freevolume

	

	
class gromacs.tools.Rama

	

	
class gromacs.tools.Xpm2ps

	

	
class gromacs.tools.Rms

	

	
class gromacs.tools.G_wham

	

	
class gromacs.tools.G_vanhove

	

	
class gromacs.tools.G_anaeig

	

	
class gromacs.tools.Cluster

	

	
class gromacs.tools.G_spol

	

	
class gromacs.tools.Dyndom

	

	
class gromacs.tools.G_pme_error

	

	
class gromacs.tools.G_current

	

	
class gromacs.tools.Eneconv

	

	
class gromacs.tools.Make_edi

	

	
class gromacs.tools.Lie

	

	
class gromacs.tools.G_potential

	

	
class gromacs.tools.Angle

	

	
class gromacs.tools.X2top

	

	
class gromacs.tools.Pme_error

	

	
class gromacs.tools.Trajectory

	

	
class gromacs.tools.G_select

	

	
class gromacs.tools.G_insert_molecules

	

	
class gromacs.tools.Current

	

	
class gromacs.tools.G_velacc

	

	
class gromacs.tools.Potential

	

	
class gromacs.tools.Dipoles

	

	
class gromacs.tools.Tcaf

	

	
class gromacs.tools.G_rotmat

	

	
class gromacs.tools.G_polystat

	

	
class gromacs.tools.Wheel

	

	
class gromacs.tools.G_bundle

	

	
class gromacs.tools.G_dyndom

	

	
class gromacs.tools.Covar

	

	
class gromacs.tools.G_msd

	

	
class gromacs.tools.Dielectric

	

	
class gromacs.tools.G_cluster

	

	
class gromacs.tools.Distance

	

	
class gromacs.tools.G_saltbr

	

	
class gromacs.tools.Rotacf

	

	
class gromacs.tools.G_freevolume

	

	
class gromacs.tools.Do_dssp

	

	
class gromacs.tools.G_bar

	

	
class gromacs.tools.Nmeig

	

	
class gromacs.tools.Hbond

	

	
class gromacs.tools.Traj

	

	
class gromacs.tools.G_wheel

	

	
class gromacs.tools.G_analyze

	

	
class gromacs.tools.Make_ndx

	

	
class gromacs.tools.Dos

	

	
class gromacs.tools.Order

	

	
class gromacs.tools.View

	

	
class gromacs.tools.Genconf

	

	
class gromacs.tools.G_tune_pme

	

	
class gromacs.tools.G_saxs

	

	
class gromacs.tools.G_mk_angndx

	

	
class gromacs.tools.G_trajectory

	

	
class gromacs.tools.G_morph

	

	
class gromacs.tools.G_chi

	

	
class gromacs.tools.G_awh

	

	
class gromacs.tools.G_sorient

	

	
class gromacs.tools.G_rmsf

	

	
class gromacs.tools.Principal

	

Gromacs building blocks

Building blocks are small classes or functions that can be freely combined
in setup or analysis scripts or used interactively. These modules act
as “library” for common tasks.

	gromacs.cbook – Gromacs Cook Book
	Miscellaneous canned Gromacs commands

	Manipulating trajectories and structures

	Processing output

	Working with topologies and mdp files

	Working with index files

	File editing functions

	gromacs.setup – Setting up a Gromacs MD run
	User functions

	Example

	User functions

	Helper functions

	gromacs.scaling – Partial tempering

	gromacs.qsub – utilities for batch submission systems
	Queuing system templates

	Classes and functions

gromacs.cbook – Gromacs Cook Book

The cbook (cook book) module contains short recipes for tasks
that are often repeated. In the simplest case this is just one of the
gromacs tools with a certain set of default command line options.

By abstracting and collecting these invocations here, errors can be
reduced and the code snippets can also serve as canonical examples for
how to do simple things.

Miscellaneous canned Gromacs commands

Simple commands with new default options so that they solve a specific
problem (see also Manipulating trajectories and structures):

	
gromacs.cbook.rmsd_backbone([s="md.tpr", f="md.xtc"[, ...]])

	Computes the RMSD of the “Backbone” atoms after fitting to the
“Backbone” (including both translation and rotation).

Manipulating trajectories and structures

Standard invocations for manipulating trajectories.

	
gromacs.cbook.trj_compact([s="md.tpr", f="md.xtc", o="compact.xtc"[, ...]])

	Writes an output trajectory or frame with a compact representation
of the system centered on the protein. It centers on the group
“Protein” and outputs the whole “System” group.

	
gromacs.cbook.trj_xyfitted([s="md.tpr", f="md.xtc"[, ...]])

	Writes a trajectory centered and fitted to the protein in the XY-plane only.

This is useful for membrane proteins. The system must be oriented so that
the membrane is in the XY plane. The protein backbone is used for the least
square fit, centering is done for the whole protein., but this can be
changed with the input = ('backbone', 'protein','system') keyword.

Note

Gromacs 4.x only

	
gromacs.cbook.trj_fitandcenter(xy=False, **kwargs)

	Center everything and make a compact representation (pass 1) and fit the system to a reference (pass 2).

	Keywords

	
	s

	input structure file (tpr file required to make molecule whole);
if a list or tuple is provided then s[0] is used for pass 1 (should be a tpr)
and s[1] is used for the fitting step (can be a pdb of the whole system)

If a second structure is supplied then it is assumed that the fitted
trajectory should not be centered.

	f

	input trajectory

	o

	output trajectory

	input

	
	A list with three groups. The default is

	[‘backbone’, ‘protein’,’system’]

The fit command uses all three (1st for least square fit,
2nd for centering, 3rd for output), the centered/make-whole stage use
2nd for centering and 3rd for output.

	input1

	If input1 is supplied then input is used exclusively
for the fitting stage (pass 2) and input1 for the centering (pass 1).

	n

	Index file used for pass 1 and pass 2.

	n1

	If n1 is supplied then index n1 is only used for pass 1
(centering) and n for pass 2 (fitting).

	xyboolean

	If True then only do a rot+trans fit in the xy plane
(good for membrane simulations); default is False.

	kwargs

	All other arguments are passed to Trjconv.

Note that here we first center the protein and create a compact box, using
-pbc mol -ur compact -center -boxcenter tric and write an intermediate
xtc. Then in a second pass we perform a rotation+translation fit (or
restricted to the xy plane if xy = True is set) on the intermediate
xtc to produce the final trajectory. Doing it in this order has the
disadvantage that the solvent box is rotating around the protein but the
opposite order (with center/compact second) produces strange artifacts
where columns of solvent appear cut out from the box—it probably means
that after rotation the information for the periodic boundaries is not
correct any more.

Most kwargs are passed to both invocations of
gromacs.tools.Trjconv so it does not really make sense to use eg
skip; in this case do things manually.

By default the input to the fit command is (‘backbone’,
‘protein’,’system’); the compact command always uses the second and third
group for its purposes or if this fails, prompts the user.

Both steps cannot performed in one pass; this is a known limitation of
trjconv. An intermediate temporary XTC files is generated which should
be automatically cleaned up unless bad things happened.

The function tries to honour the input/output formats. For instance, if you
want trr output you need to supply a trr file as input and explicitly give
the output file also a trr suffix.

Note

For big trajectories it can take a very long time
and consume a large amount of temporary diskspace.

We follow the g_spatial documentation [http://www.gromacs.org/Documentation/Gromacs_Utilities/g_spatial] in preparing the trajectories:

trjconv -s a.tpr -f a.xtc -o b.xtc -center -boxcenter tric -ur compact -pbc mol
trjconv -s a.tpr -f b.xtc -o c.xtc -fit rot+trans

	
gromacs.cbook.cat(prefix='md', dirname='.', partsdir='parts', fulldir='full', resolve_multi='pass')

	Concatenate all parts of a simulation.

The xtc, trr, and edr files in dirname such as prefix.xtc,
prefix.part0002.xtc, prefix.part0003.xtc, … are

	moved to the partsdir (under dirname)

	concatenated with the Gromacs tools to yield prefix.xtc, prefix.trr,
prefix.edr, prefix.gro (or prefix.md) in dirname

	Store these trajectories in fulldir

Note

Trajectory files are never deleted by this function to avoid
data loss in case of bugs. You will have to clean up yourself
by deleting dirname/partsdir.

Symlinks for the trajectories are not handled well and
break the function. Use hard links instead.

Warning

If an exception occurs when running this function then make
doubly and triply sure where your files are before running
this function again; otherwise you might overwrite data.
Possibly you will need to manually move the files from partsdir
back into the working directory dirname; this should onlu overwrite
generated files so far but check carefully!

	Keywords

	
	prefix

	deffnm of the trajectories [md]

	*resolve_multi”

	how to deal with multiple “final” gro or pdb files: normally there should
only be one but in case of restarting from the checkpoint of a finished
simulation one can end up with multiple identical ones.

	“pass” : do nothing and log a warning

	
	“guess”take prefix.pdb or prefix.gro if it exists, otherwise the one of

	prefix.partNNNN.gro|pdb with the highes NNNN

	dirname

	change to dirname and assume all tarjectories are located there [.]

	partsdir

	directory where to store the input files (they are moved out of the way);
partsdir must be manually deleted [parts]

	fulldir

	directory where to store the final results [full]

	
class gromacs.cbook.Frames(structure, trj, maxframes=None, format='pdb', **kwargs)

	A iterator that transparently provides frames from a trajectory.

The iterator chops a trajectory into individual frames for
analysis tools that only work on separate structures such as
gro or pdb files. Instead of turning the whole trajectory
immediately into pdb files (and potentially filling the disk), the
iterator can be instructed to only provide a fixed number of
frames and compute more frames when needed.

Note

Setting a limit on the number of frames on disk can lead
to longish waiting times because trjconv must
re-seek to the middle of the trajectory and the only way
it can do this at the moment is by reading frames
sequentially. This might still be preferrable to filling
up a disk, though.

Warning

The maxframes option is not implemented yet; use
the dt option or similar to keep the number of frames
manageable.

Set up the Frames iterator.

	Arguments

	
	structure

	name of a structure file (tpr, pdb, …)

	trj

	name of the trajectory (xtc, trr, …)

	format

	output format for the frames, eg “pdb” or “gro” [pdb]

	maxframesint

	maximum number of frames that are extracted to disk at
one time; set to None to extract the whole trajectory
at once. [None]

	kwargs

	All other arguments are passed to
class:~gromacs.tools.Trjconv; the only options that
cannot be changed are sep and the output file name o.

	
all_frames

	Unordered list of all frames currently held on disk.

	
cleanup()

	Clean up all temporary frames (which can be HUGE).

	
delete_frames()

	Delete all frames.

	
extract()

	Extract frames from the trajectory to the temporary directory.

	
class gromacs.cbook.Transformer(s='topol.tpr', f='traj.xtc', n=None, force=None, dirname='.', outdir=None)

	Class to handle transformations of trajectories.

	Center, compact, and fit to reference structure in tpr
(optionally, only center in the xy plane): center_fit()

	Write compact xtc and tpr with water removed: strip_water()

	Write compact xtc and tpr only with protein: keep_protein_only()

Set up Transformer with structure and trajectory.

Supply n = tpr, f = xtc (and n = ndx) relative to dirname.

	Keywords

	
	s

	tpr file (or similar); note that this should not contain
position restraints if it is to be used with a reduced
system (see strip_water())

	f

	trajectory (xtc, trr, …)

	n

	index file (it is typically safe to leave this as None; in
cases where a trajectory needs to be centered on non-standard
groups this should contain those groups)

	force

	
	Set the default behaviour for handling existing files:

	
	True: overwrite existing trajectories

	False: throw a IOError exception

	None: skip existing and log a warning [default]

	dirname

	directory in which all operations are performed, relative paths
are interpreted relative to dirname [.]

	outdir

	directory under which output files are placed; by default
the same directory where the input files live

	
center_fit(**kwargs)

	Write compact xtc that is fitted to the tpr reference structure.

See gromacs.cbook.trj_fitandcenter() for details and
description of kwargs (including input, input1, n and
n1 for how to supply custom index groups). The most important ones are listed
here but in most cases the defaults should work.

	Keywords

	
	s

	Input structure (typically the default tpr file but can be set to
some other file with a different conformation for fitting)

	n

	Alternative index file.

	o

	Name of the output trajectory.

	xyBoolean

	If True then only fit in xy-plane (useful for a membrane normal
to z). The default is False.

	force

	
	True: overwrite existing trajectories

	False: throw a IOError exception

	None: skip existing and log a warning [default]

	Returns

	dictionary with keys tpr, xtc, which are the names of the
the new files

	
fit(xy=False, **kwargs)

	Write xtc that is fitted to the tpr reference structure.

Runs gromacs.tools.trjconv with appropriate arguments
for fitting. The most important kwargs are listed
here but in most cases the defaults should work.

Note that the default settings do not include centering or
periodic boundary treatment as this often does not work well
with fitting. It is better to do this as a separate step (see
center_fit() or gromacs.cbook.trj_fitandcenter())

	Keywords

	

	s

	Input structure (typically the default tpr file but can be set to
some other file with a different conformation for fitting)

	n

	Alternative index file.

	o

	Name of the output trajectory. A default name is created.
If e.g. dt = 100 is one of the kwargs then the default name includes
“_dt100ps”.

	xyboolean

	If True then only do a rot+trans fit in the xy plane
(good for membrane simulations); default is False.

	force

	True: overwrite existing trajectories
False: throw a IOError exception
None: skip existing and log a warning [default]

	fitgroup

	index group to fit on [“backbone”]

Note

If keyword input is supplied then it will override
fitgroup; input = [fitgroup, outgroup]

	kwargs

	kwargs are passed to trj_xyfitted()

	Returns

	dictionary with keys tpr, xtc, which are the names of the
the new files

	
keep_protein_only(os=None, o=None, on=None, compact=False, groupname='proteinonly', **kwargs)

	Write xtc and tpr only containing the protein.

	Keywords

	
	os

	Name of the output tpr file; by default use the original but
insert “proteinonly” before suffix.

	o

	Name of the output trajectory; by default use the original name but
insert “proteinonly” before suffix.

	on

	Name of a new index file.

	compact

	True: write a compact and centered trajectory
False: use trajectory as it is [False]

	groupname

	Name of the protein-only group.

	keepalso

	List of literal make_ndx selections of additional groups that should
be kept, e.g. [‘resname DRUG’, ‘atom 6789’].

	forceBoolean

	
	True: overwrite existing trajectories

	False: throw a IOError exception

	None: skip existing and log a warning [default]

	kwargs

	are passed on to gromacs.cbook.trj_compact() (unless the
values have to be set to certain values such as s, f, n, o
keywords). The input keyword is always mangled: Only the first
entry (the group to centre the trajectory on) is kept, and as a
second group (the output group) groupname is used.

	Returns

	dictionary with keys tpr, xtc, ndx which are the names of the
the new files

Warning

The input tpr file should not have any position restraints;
otherwise Gromacs will throw a hissy-fit and say

Software inconsistency error: Position restraint coordinates are
missing

(This appears to be a bug in Gromacs 4.x.)

	
outfile(p)

	Path for an output file.

If outdir is set then the path is
outdir/basename(p) else just p

	
rp(*args)

	Return canonical path to file under dirname with components args

If args form an absolute path then just return it as the absolute path.

	
strip_fit(**kwargs)

	Strip water and fit to the remaining system.

First runs strip_water() and then fit(); see there
for arguments.

	strip_input is used for strip_water() (but is only useful in
special cases, e.g. when there is no Protein group defined. Then set
strip_input = ['Other'].

	input is passed on to fit() and can contain the
[center_group, fit_group, output_group]

	fitgroup is only passed to fit() and just contains
the group to fit to (“backbone” by default)

Warning

fitgroup can only be a Gromacs default group and not
a custom group (because the indices change after stripping)

	By default fit = “rot+trans” (and fit is passed to fit(),
together with the xy = False keyword)

Note

The call signature of strip_water() is somewhat different from this one.

	
strip_water(os=None, o=None, on=None, compact=False, resn='SOL', groupname='notwater', **kwargs)

	Write xtc and tpr with water (by resname) removed.

	Keywords

	
	os

	Name of the output tpr file; by default use the original but
insert “nowater” before suffix.

	o

	Name of the output trajectory; by default use the original name but
insert “nowater” before suffix.

	on

	Name of a new index file (without water).

	compact

	True: write a compact and centered trajectory
False: use trajectory as it is [False]

	centergroup

	Index group used for centering [“Protein”]

Note

If input is provided (see below under kwargs)
then centergroup is ignored and the group for
centering is taken as the first entry in input.

	resn

	Residue name of the water molecules; all these residues are excluded.

	groupname

	Name of the group that is generated by subtracting all waters
from the system.

	forceBoolean

	
	True: overwrite existing trajectories

	False: throw a IOError exception

	None: skip existing and log a warning [default]

	kwargs

	are passed on to gromacs.cbook.trj_compact() (unless the
values have to be set to certain values such as s, f, n, o
keywords). The input keyword is always mangled: Only the first
entry (the group to centre the trajectory on) is kept, and as a
second group (the output group) groupname is used.

	Returns

	dictionary with keys tpr, xtc, ndx which are the names of the
the new files

Warning

The input tpr file should not have any position restraints;
otherwise Gromacs will throw a hissy-fit and say

Software inconsistency error: Position restraint coordinates are
missing

(This appears to be a bug in Gromacs 4.x.)

	
gromacs.cbook.get_volume(f)

	Return the volume in nm^3 of structure file f.

(Uses gromacs.editconf(); error handling is not good)

Processing output

There are cases when a script has to to do different things depending
on the output from a Gromacs tool.

For instance, a common case is to check the total charge after
grompping a tpr file. The grompp_qtot function does just that.

	
gromacs.cbook.grompp_qtot(*args, **kwargs)

	Run gromacs.grompp and return the total charge of the system.

	Arguments

	The arguments are the ones one would pass to gromacs.grompp().

	Returns

	The total charge as reported

Some things to keep in mind:

	The stdout output of grompp is only shown when an error occurs. For
debugging, look at the log file or screen output and try running the
normal gromacs.grompp() command and analyze the output if the
debugging messages are not sufficient.

	Check that qtot is correct. Because the function is based on pattern
matching of the informative output of grompp it can break when
the output format changes. This version recognizes lines like

' System has non-zero total charge: -4.000001e+00'

using the regular expression
System has non-zero total charge: *(?P<qtot>[-+]?d*.d+([eE][-+]d+)?).

	
gromacs.cbook.get_volume(f)

	Return the volume in nm^3 of structure file f.

(Uses gromacs.editconf(); error handling is not good)

	
gromacs.cbook.parse_ndxlist(output)

	Parse output from make_ndx to build list of index groups:

groups = parse_ndxlist(output)

output should be the standard output from make_ndx, e.g.:

rc,output,junk = gromacs.make_ndx(..., input=('', 'q'), stdout=False, stderr=True)

(or simply use

rc,output,junk = cbook.make_ndx_captured(…)

which presets input, stdout and stderr; of course input can be overriden.)

	Returns

	The function returns a list of dicts (groups) with fields

	name

	name of the groups

	nr

	number of the group (starts at 0)

	natoms

	number of atoms in the group

Working with topologies and mdp files

	
gromacs.cbook.create_portable_topology(topol, struct, **kwargs)

	Create a processed topology.

The processed (or portable) topology file does not contain any
#include statements and hence can be easily copied around. It
also makes it possible to re-grompp without having any special itp
files available.

	Arguments

	
	topol

	topology file

	struct

	coordinat (structure) file

	Keywords

	
	processed

	name of the new topology file; if not set then it is named like
topol but with pp_ prepended

	includes

	path or list of paths of directories in which itp files are
searched for

	grompp_kwargs*

	other options for grompp such as maxwarn=2 can
also be supplied

	Returns

	full path to the processed topology

	
gromacs.cbook.edit_mdp(mdp, new_mdp=None, extend_parameters=None, **substitutions)

	Change values in a Gromacs mdp file.

Parameters and values are supplied as substitutions, eg nsteps=1000.

By default the template mdp file is overwritten in place.

If a parameter does not exist in the template then it cannot be substituted
and the parameter/value pair is returned. The user has to check the
returned list in order to make sure that everything worked as expected. At
the moment it is not possible to automatically append the new values to the
mdp file because of ambiguities when having to replace dashes in parameter
names with underscores (see the notes below on dashes/underscores).

If a parameter is set to the value None then it will be ignored.

	Arguments

	
	mdpfilename

	filename of input (and output filename of new_mdp=None)

	new_mdpfilename

	filename of alternative output mdp file [None]

	extend_parametersstring or list of strings

	single parameter or list of parameters for which the new values
should be appended to the existing value in the mdp file. This
makes mostly sense for a single parameter, namely ‘include’, which
is set as the default. Set to [] to disable. [‘include’]

	substitutions

	parameter=value pairs, where parameter is defined by the Gromacs
mdp file; dashes in parameter names have to be replaced by
underscores. If a value is a list-like object then the items are
written as a sequence, joined with spaces, e.g.

ref_t=[310,310,310] ---> ref_t = 310 310 310

	Returns

	Dict of parameters that have not been substituted.

Example

edit_mdp('md.mdp', new_mdp='long_md.mdp', nsteps=100000, nstxtcout=1000, lincs_iter=2)

Note

	Dashes in Gromacs mdp parameters have to be replaced by an underscore
when supplied as python keyword arguments (a limitation of python). For example
the MDP syntax is lincs-iter = 4 but the corresponding keyword would be
lincs_iter = 4.

	If the keyword is set as a dict key, eg mdp_params['lincs-iter']=4 then one
does not have to substitute.

	Parameters aa_bb and aa-bb are considered the same (although this should
not be a problem in practice because there are no mdp parameters that only
differ by a underscore).

	This code is more compact in Perl as one can use s/// operators:
s/^(\s*${key}\s*=\s*).*/$1${val}/

See also

One can also load the mdp file with
gromacs.formats.MDP, edit the object (a dict), and save it again.

	
gromacs.cbook.add_mdp_includes(topology=None, kwargs=None)

	Set the mdp include key in the kwargs dict.

	Add the directory containing topology.

	Add all directories appearing under the key includes

	Generate a string of the form “-Idir1 -Idir2 …” that
is stored under the key include (the corresponding
mdp parameter)

By default, the directories . and .. are also added to the
include string for the mdp; when fed into
gromacs.cbook.edit_mdp() it will result in a line such as

include = -I. -I.. -I../topology_dir

Note that the user can always override the behaviour by setting
the include keyword herself; in this case this function does
nothing.

If no kwargs were supplied then a dict is generated with the
single include entry.

	Arguments

	
	topologytop filename

	Topology file; the name of the enclosing directory is added
to the include path (if supplied) [None]

	kwargsdict

	Optional dictionary of mdp keywords; will be modified in place.
If it contains the includes keyword with either a single string
or a list of strings then these paths will be added to the
include statement.

	Returns

	kwargs with the include keyword added if it did not
exist previously; if the keyword already existed, nothing
happens.

Note

The kwargs dict is modified in place. This
function is a bit of a hack. It might be removed once
all setup functions become methods in a nice class.

	
gromacs.cbook.grompp_qtot(*args, **kwargs)

	Run gromacs.grompp and return the total charge of the system.

	Arguments

	The arguments are the ones one would pass to gromacs.grompp().

	Returns

	The total charge as reported

Some things to keep in mind:

	The stdout output of grompp is only shown when an error occurs. For
debugging, look at the log file or screen output and try running the
normal gromacs.grompp() command and analyze the output if the
debugging messages are not sufficient.

	Check that qtot is correct. Because the function is based on pattern
matching of the informative output of grompp it can break when
the output format changes. This version recognizes lines like

' System has non-zero total charge: -4.000001e+00'

using the regular expression
System has non-zero total charge: *(?P<qtot>[-+]?d*.d+([eE][-+]d+)?).

Working with index files

Manipulation of index files (ndx) can be cumbersome because the
make_ndx program is not very sophisticated (yet) compared to
full-fledged atom selection expression as available in Charmm [http://www.charmm.org/html/documentation/c35b1/select.html], VMD [http://www.ks.uiuc.edu/Research/vmd/current/ug/node87.html], or
MDAnalysis [http://mdanalysis.org]. Some tools help in building and interpreting index files.

See also

The gromacs.formats.NDX class can solve a number
of index problems in a cleaner way than the classes and
functions here.

	
class gromacs.cbook.IndexBuilder(struct=None, selections=None, names=None, name_all=None, ndx=None, out_ndx='selection.ndx', offset=0)

	Build an index file with specified groups and the combined group.

This is not a full blown selection parser a la Charmm, VMD or
MDAnalysis but a very quick hack.

Example

How to use the IndexBuilder:

G = gromacs.cbook.IndexBuilder('md_posres.pdb',
 ['S312:OG','T313:OG1','A38:O','A309:O','@a62549 & r NA'],
 offset=-9, out_ndx='selection.ndx')
groupname, ndx = G.combine()
del G

The residue numbers are given with their canonical resids from the
sequence or pdb. offset=-9 says that one calculates Gromacs topology
resids by subtracting 9 from the canonical resid.

The combined selection is OR ed by default and written to
selection.ndx. One can also add all the groups in the initial ndx
file (or the make_ndx default groups) to the output (see the
defaultgroups keyword for IndexBuilder.combine()).

Generating an index file always requires calling
combine() even if there is only a single group.

Deleting the class removes all temporary files associated with it (see
IndexBuilder.indexfiles).

	Raises

	If an empty group is detected (which does not always work) then a
gromacs.BadParameterWarning is issued.

	Bugs

	If make_ndx crashes with an unexpected error then this is fairly hard to
diagnose. For instance, in certain cases it segmentation faults when a tpr
is provided as a struct file and the resulting error messages becomes

GromacsError: [Errno -11] Gromacs tool failed
Command invocation: make_ndx -o /tmp/tmp_Na1__NK7cT3.ndx -f md_posres.tpr

In this case run the command invocation manually to see what the problem
could be.

See also

In some cases it might be more straightforward to use
gromacs.formats.NDX.

Build a index group from the selection arguments.

If selections and a structure file are supplied then the individual
selections are constructed with separate calls to
gromacs.make_ndx(). Use IndexBuilder.combine() to combine
them into a joint selection or IndexBuilder.write() to simply write
out the individual named selections (useful with names).

	Arguments

	
	structfilename

	Structure file (tpr, pdb, …)

	selectionslist

	The list must contain strings or tuples, which must be be one of
the following constructs:

“<1-letter aa code><resid>[:<atom name]”

Selects the CA of the residue or the specified atom
name.

example: "S312:OA" or "A22" (equivalent to "A22:CA")

(“<1-letter aa code><resid>”, “<1-letter aa code><resid>, [“<atom name>”])

Selects a range of residues. If only two residue
identifiers are provided then all atoms are
selected. With an optional third atom identifier,
only this atom anme is selected for each residue
in the range. [EXPERIMENTAL]

“@<make_ndx selection>”

The @ letter introduces a verbatim make_ndx
command. It will apply the given selection without any
further processing or checks.

example: "@a 6234 - 6238" or '@"SOL"' (note the quoting)
or "@r SER & r 312 & t OA".

	nameslist

	Strings to name the selections; if not supplied or if individuals
are None then a default name is created. When simply using
IndexBuilder.write() then these should be supplied.

	name_allstring

	Name of the group that is generated by IndexBuilder.combine().

	offsetint, dict

	This number is added to the resids in the first selection scheme; this
allows names to be the same as in a crystal structure. If offset is a
dict then it is used to directly look up the resids.

	ndxfilename or list of filenames

	Optional input index file(s).

	out_ndxfilename

	Output index file.

	
combine(name_all=None, out_ndx=None, operation='|', defaultgroups=False)

	Combine individual groups into a single one and write output.

	Keywords

	
	name_allstring

	Name of the combined group, None generates a name. [None]

	out_ndxfilename

	Name of the output file that will contain the individual groups
and the combined group. If None then default from the class
constructor is used. [None]

	operationcharacter

	Logical operation that is used to generate the combined group from
the individual groups: “|” (OR) or “&” (AND); if set to False
then no combined group is created and only the individual groups
are written. [“|”]

	defaultgroupsbool

	True: append everything to the default groups produced by
make_ndx (or rather, the groups provided in the ndx file on
initialization — if this was None then these are truly default groups);
False: only use the generated groups

	Returns

	(combinedgroup_name, output_ndx), a tuple showing the
actual group name and the name of the file; useful when all names are autogenerated.

Warning

The order of the atom numbers in the combined group is
not guaranteed to be the same as the selections on input because
make_ndx sorts them ascending. Thus you should be careful when
using these index files for calculations of angles and dihedrals.
Use gromacs.formats.NDX in these cases.

See also

IndexBuilder.write().

	
gmx_resid(resid)

	Returns resid in the Gromacs index by transforming with offset.

	
gromacs.cbook.parse_ndxlist(output)

	Parse output from make_ndx to build list of index groups:

groups = parse_ndxlist(output)

output should be the standard output from make_ndx, e.g.:

rc,output,junk = gromacs.make_ndx(..., input=('', 'q'), stdout=False, stderr=True)

(or simply use

rc,output,junk = cbook.make_ndx_captured(…)

which presets input, stdout and stderr; of course input can be overriden.)

	Returns

	The function returns a list of dicts (groups) with fields

	name

	name of the groups

	nr

	number of the group (starts at 0)

	natoms

	number of atoms in the group

	
gromacs.cbook.get_ndx_groups(ndx, **kwargs)

	Return a list of index groups in the index file ndx.

	Arguments

	
	ndx is a Gromacs index file.

	kwargs are passed to make_ndx_captured().

	Returns

	list of groups as supplied by parse_ndxlist()

Alternatively, load the index file with
gromacs.formats.NDX for full control.

	
gromacs.cbook.make_ndx_captured(**kwargs)

	make_ndx that captures all output

Standard make_ndx() command with the input and
output pre-set in such a way that it can be conveniently used for
parse_ndxlist().

	Example::

	ndx_groups = parse_ndxlist(make_ndx_captured(n=ndx)[0])

Note that the convenient get_ndx_groups() function does exactly
that and can probably used in most cases.

	Arguments

	keywords are passed on to make_ndx()

	Returns

	(returncode, output, None)

File editing functions

It is often rather useful to be able to change parts of a template
file. For specialized cases the two following functions are useful:

	
gromacs.cbook.edit_mdp(mdp, new_mdp=None, extend_parameters=None, **substitutions)

	Change values in a Gromacs mdp file.

Parameters and values are supplied as substitutions, eg nsteps=1000.

By default the template mdp file is overwritten in place.

If a parameter does not exist in the template then it cannot be substituted
and the parameter/value pair is returned. The user has to check the
returned list in order to make sure that everything worked as expected. At
the moment it is not possible to automatically append the new values to the
mdp file because of ambiguities when having to replace dashes in parameter
names with underscores (see the notes below on dashes/underscores).

If a parameter is set to the value None then it will be ignored.

	Arguments

	
	mdpfilename

	filename of input (and output filename of new_mdp=None)

	new_mdpfilename

	filename of alternative output mdp file [None]

	extend_parametersstring or list of strings

	single parameter or list of parameters for which the new values
should be appended to the existing value in the mdp file. This
makes mostly sense for a single parameter, namely ‘include’, which
is set as the default. Set to [] to disable. [‘include’]

	substitutions

	parameter=value pairs, where parameter is defined by the Gromacs
mdp file; dashes in parameter names have to be replaced by
underscores. If a value is a list-like object then the items are
written as a sequence, joined with spaces, e.g.

ref_t=[310,310,310] ---> ref_t = 310 310 310

	Returns

	Dict of parameters that have not been substituted.

Example

edit_mdp('md.mdp', new_mdp='long_md.mdp', nsteps=100000, nstxtcout=1000, lincs_iter=2)

Note

	Dashes in Gromacs mdp parameters have to be replaced by an underscore
when supplied as python keyword arguments (a limitation of python). For example
the MDP syntax is lincs-iter = 4 but the corresponding keyword would be
lincs_iter = 4.

	If the keyword is set as a dict key, eg mdp_params['lincs-iter']=4 then one
does not have to substitute.

	Parameters aa_bb and aa-bb are considered the same (although this should
not be a problem in practice because there are no mdp parameters that only
differ by a underscore).

	This code is more compact in Perl as one can use s/// operators:
s/^(\s*${key}\s*=\s*).*/$1${val}/

See also

One can also load the mdp file with
gromacs.formats.MDP, edit the object (a dict), and save it again.

	
gromacs.cbook.edit_txt(filename, substitutions, newname=None)

	Primitive text file stream editor.

This function can be used to edit free-form text files such as the
topology file. By default it does an in-place edit of
filename. If newname is supplied then the edited
file is written to newname.

	Arguments

	
	filename

	input text file

	substitutions

	substitution commands (see below for format)

	newname

	output filename; if None then filename is changed in
place [None]

substitutions is a list of triplets; the first two elements are regular
expression strings, the last is the substitution value. It mimics
sed search and replace. The rules for substitutions:

substitutions ::= "[" search_replace_tuple, ... "]"
search_replace_tuple ::= "(" line_match_RE "," search_RE "," replacement ")"
line_match_RE ::= regular expression that selects the line (uses match)
search_RE ::= regular expression that is searched in the line
replacement ::= replacement string for search_RE

Running edit_txt() does pretty much what a simple

sed /line_match_RE/s/search_RE/replacement/

with repeated substitution commands does.

Special replacement values:
- None: the rule is ignored
- False: the line is deleted (even if other rules match)

Note

	No sanity checks are performed and the substitutions must be supplied
exactly as shown.

	All substitutions are applied to a line; thus the order of the substitution
commands may matter when one substitution generates a match for a subsequent rule.

	If replacement is set to None then the whole expression is ignored and
whatever is in the template is used. To unset values you must provided an
empty string or similar.

	Delete a matching line if replacement=``False``.

gromacs.setup – Setting up a Gromacs MD run

Individual steps such as solvating a structure or energy minimization
are set up in individual directories. For energy minimization one
should supply appropriate mdp run input files; otherwise example
templates are used.

Warning

You must check all simulation parameters for yourself. Do not rely on
any defaults provided here. The scripts provided here are provided under the
assumption that you know what you are doing and you just want to automate
the boring parts of the process.

User functions

The individual steps of setting up a simple MD simulation are broken down in a
sequence of functions that depend on the previous step(s):

	topology()

	generate initial topology file (limited functionality, might require
manual setup)

	solvate()

	solvate globular protein and add ions to neutralize

	energy_minimize()

	set up energy minimization and run it (using mdrun_d)

	em_schedule()

	set up and run multiple energy minimizations one after another (as an
alternative to the simple single energy minimization provided by
energy_minimize())

	MD_restrained()

	set up restrained MD

	MD()

	set up equilibrium MD

Each function uses its own working directory (set with the dirname keyword
argument, but it should be safe and convenient to use the defaults). Other
arguments assume the default locations so typically not much should have to be
set manually.

One can supply non-standard itp files in the topology directory. In
some cases one does not use the topology() function at all but
sets up the topology manually. In this case it is safest to call the
topology directory top and make sure that it contains all relevant
top, itp, and pdb files.

Example

Run a single protein in a dodecahedral box of SPC water molecules and
use the GROMOS96 G43a1 force field. We start with the structure in
protein.pdb:

from gromacs.setup import *
f1 = topology(protein='MyProtein', struct='protein.pdb', ff='G43a1', water='spc', force=True, ignh=True)

Each function returns “interesting” new files in a dictionary in such
a away that it can often be used as input for the next function in the
chain (although in most cases one can get away with the defaults of
the keyword arguments):

f2 = solvate(**f1)
f3 = energy_minimize(**f2)

Now prepare input for a MD run with restraints on the protein:

MD_restrained(**f3)

Use the files in the directory to run the simulation locally or on a
cluster. You can provide your own template for a queuing system
submission script; see the source code for details.

Once the restraint run has completed, use the last frame as input for
the equilibrium MD:

MD(struct='MD_POSRES/md.gro', runtime=1e5)

Run the resulting tpr file on a cluster.

User functions

The following functions are provided for the user:

	
gromacs.setup.topology(struct=None, protein='protein', top='system.top', dirname='top', posres='posres.itp', ff='oplsaa', water='tip4p', **pdb2gmx_args)

	Build Gromacs topology files from pdb.

	Keywords

	
	struct

	input structure (required)

	protein

	name of the output files

	top

	name of the topology file

	dirname

	directory in which the new topology will be stored

	ff

	force field (string understood by pdb2gmx); default
“oplsaa”

	water

	water model (string), default “tip4p”

	pdb2gmxargs

	other arguments for pdb2gmx

Note

At the moment this function simply runs pdb2gmx and uses
the resulting topology file directly. If you want to create
more complicated topologies and maybe also use additional itp
files or make a protein itp file then you will have to do this
manually.

	
gromacs.setup.solvate(struct='top/protein.pdb', top='top/system.top', distance=0.9, boxtype='dodecahedron', concentration=0, cation='NA', anion='CL', water='tip4p', solvent_name='SOL', with_membrane=False, ndx='main.ndx', mainselection='"Protein"', dirname='solvate', **kwargs)

	Put protein into box, add water, add counter-ions.

Currently this really only supports solutes in water. If you need
to embedd a protein in a membrane then you will require more
sophisticated approaches.

However, you can supply a protein already inserted in a
bilayer. In this case you will probably want to set distance =
None and also enable with_membrane = True (using extra
big vdw radii for typical lipids).

Note

The defaults are suitable for solvating a globular
protein in a fairly tight (increase distance!) dodecahedral
box.

	Arguments

	
	structfilename

	pdb or gro input structure

	topfilename

	Gromacs topology

	distancefloat

	When solvating with water, make the box big enough so that
at least distance nm water are between the solute struct
and the box boundary.
Set boxtype to None in order to use a box size in the input
file (gro or pdb).

	boxtype or bt: string

	Any of the box types supported by Editconf
(triclinic, cubic, dodecahedron, octahedron). Set the box dimensions
either with distance or the box and angle keywords.

If set to None it will ignore distance and use the box
inside the struct file.

bt overrides the value of boxtype.

	box

	List of three box lengths [A,B,C] that are used by Editconf
in combination with boxtype (bt in editconf) and angles.
Setting box overrides distance.

	angles

	List of three angles (only necessary for triclinic boxes).

	concentrationfloat

	Concentration of the free ions in mol/l. Note that counter
ions are added in excess of this concentration.

	cation and anionstring

	Molecule names of the ions. This depends on the chosen force field.

	waterstring

	Name of the water model; one of “spc”, “spce”, “tip3p”,
“tip4p”. This should be appropriate for the chosen force
field. If an alternative solvent is required, simply supply the path to a box
with solvent molecules (used by genbox()’s cs argument)
and also supply the molecule name via solvent_name.

	solvent_name

	Name of the molecules that make up the solvent (as set in the itp/top).
Typically needs to be changed when using non-standard/non-water solvents.
[“SOL”]

	with_membranebool

	True: use special vdwradii.dat with 0.1 nm-increased radii on
lipids. Default is False.

	ndxfilename

	How to name the index file that is produced by this function.

	mainselectionstring

	A string that is fed to Make_ndx and
which should select the solute.

	dirnamedirectory name

	Name of the directory in which all files for the solvation stage are stored.

	includes

	List of additional directories to add to the mdp include path

	kwargs

	Additional arguments are passed on to
Editconf or are interpreted as parameters to be
changed in the mdp file.

	
gromacs.setup.energy_minimize(dirname='em', mdp='/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/em.mdp', struct='solvate/ionized.gro', top='top/system.top', output='em.pdb', deffnm='em', mdrunner=None, mdrun_args=None, **kwargs)

	Energy minimize the system.

This sets up the system (creates run input files) and also runs
mdrun_d. Thus it can take a while.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values.

	Keywords

	
	dirname

	set up under directory dirname [em]

	struct

	input structure (gro, pdb, …) [solvate/ionized.gro]

	output

	output structure (will be put under dirname) [em.pdb]

	deffnm

	default name for mdrun-related files [em]

	top

	topology file [top/system.top]

	mdp

	mdp file (or use the template) [templates/em.mdp]

	includes

	additional directories to search for itp files

	mdrunner

	gromacs.run.MDrunner instance; by default we
just try gromacs.mdrun_d() and gromacs.mdrun() but a
MDrunner instance gives the user the ability to run mpi jobs
etc. [None]

	mdrun_args

	arguments for mdrunner (as a dict), e.g. {'nt': 2};
empty by default

	kwargs

	remaining key/value pairs that should be changed in the
template mdp file, eg nstxtcout=250, nstfout=250.

Note

If mdrun_d() is not found, the function
falls back to mdrun() instead.

	
gromacs.setup.em_schedule(**kwargs)

	Run multiple energy minimizations one after each other.

	Keywords

	
	integrators

	list of integrators (from ‘l-bfgs’, ‘cg’, ‘steep’)
[[‘bfgs’, ‘steep’]]

	nsteps

	list of maximum number of steps; one for each integrator in
in the integrators list [[100,1000]]

	kwargs

	mostly passed to gromacs.setup.energy_minimize()

	Returns

	dictionary with paths to final structure (‘struct’) and
other files

	Example

	
	Conduct three minimizations:

	
	low memory Broyden-Goldfarb-Fletcher-Shannon (BFGS) for 30 steps

	steepest descent for 200 steps

	finish with BFGS for another 30 steps

We also do a multi-processor minimization when possible (i.e. for steep
(and conjugate gradient) by using a gromacs.run.MDrunner class
for a mdrun executable compiled for OpenMP in 64 bit (see
gromacs.run for details):

import gromacs.run
gromacs.setup.em_schedule(struct='solvate/ionized.gro',
 mdrunner=gromacs.run.MDrunnerOpenMP64,
 integrators=['l-bfgs', 'steep', 'l-bfgs'],
 nsteps=[50,200, 50])

Note

You might have to prepare the mdp file carefully because at the
moment one can only modify the nsteps parameter on a
per-minimizer basis.

	
gromacs.setup.MD_restrained(dirname='MD_POSRES', **kwargs)

	Set up MD with position restraints.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values. Note that
setting mainselection = None will disable many of the automated
choices and is often recommended when using your own mdp file.

	Keywords

	
	dirname

	set up under directory dirname [MD_POSRES]

	struct

	input structure (gro, pdb, …) [em/em.pdb]

	top

	topology file [top/system.top]

	mdp

	mdp file (or use the template) [templates/md.mdp]

	ndx

	index file (supply when using a custom mdp)

	includes

	additional directories to search for itp files

	mainselection

	make_ndx selection to select main group [“Protein”]
(If None then no canonical index file is generated and
it is the user’s responsibility to set tc_grps,
tau_t, and ref_t as keyword arguments, or provide the mdp template
with all parameter pre-set in mdp and probably also your own ndx
index file.)

	deffnm

	default filename for Gromacs run [md]

	runtime

	total length of the simulation in ps [1000]

	dt

	integration time step in ps [0.002]

	qscript

	script to submit to the queuing system; by default
uses the template gromacs.config.qscript_template, which can
be manually set to another template from gromacs.config.templates;
can also be a list of template names.

	qname

	name to be used for the job in the queuing system [PR_GMX]

	mdrun_opts

	option flags for the mdrun command in the queuing system
scripts such as “-stepout 100”. [“”]

	kwargs

	remaining key/value pairs that should be changed in the template mdp
file, eg nstxtcout=250, nstfout=250 or command line options for
grompp` such as ``maxwarn=1.

In particular one can also set define and activate
whichever position restraints have been coded into the itp
and top file. For instance one could have

define = “-DPOSRES_MainChain -DPOSRES_LIGAND”

if these preprocessor constructs exist. Note that there
must not be any space between “-D” and the value.

By default define is set to “-DPOSRES”.

	Returns

	a dict that can be fed into gromacs.setup.MD()
(but check, just in case, especially if you want to
change the define parameter in the mdp file)

Note

The output frequency is drastically reduced for position
restraint runs by default. Set the corresponding nst*
variables if you require more output. The pressure coupling [http://manual.gromacs.org/online/mdp_opt.html#pc]
option refcoord_scaling is set to “com” by default (but can
be changed via kwargs) and the pressure coupling
algorithm itself is set to Pcoupl = “Berendsen” to
run a stable simulation.

	
gromacs.setup.MD(dirname='MD', **kwargs)

	Set up equilibrium MD.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values. Note that
setting mainselection = None will disable many of the automated
choices and is often recommended when using your own mdp file.

	Keywords

	
	dirname

	set up under directory dirname [MD]

	struct

	input structure (gro, pdb, …) [MD_POSRES/md_posres.pdb]

	top

	topology file [top/system.top]

	mdp

	mdp file (or use the template) [templates/md.mdp]

	ndx

	index file (supply when using a custom mdp)

	includes

	additional directories to search for itp files

	mainselection

	make_ndx selection to select main group [“Protein”]
(If None then no canonical index file is generated and
it is the user’s responsibility to set tc_grps,
tau_t, and ref_t as keyword arguments, or provide the mdp template
with all parameter pre-set in mdp and probably also your own ndx
index file.)

	deffnm

	default filename for Gromacs run [md]

	runtime

	total length of the simulation in ps [1000]

	dt

	integration time step in ps [0.002]

	qscript

	script to submit to the queuing system; by default
uses the template gromacs.config.qscript_template, which can
be manually set to another template from gromacs.config.templates;
can also be a list of template names.

	qname

	name to be used for the job in the queuing system [MD_GMX]

	mdrun_opts

	option flags for the mdrun command in the queuing system
scripts such as “-stepout 100 -dgdl”. [“”]

	kwargs

	remaining key/value pairs that should be changed in the template mdp
file, e.g. nstxtcout=250, nstfout=250 or command line options for
:program`grompp` such as maxwarn=1.

	Returns

	a dict that can be fed into gromacs.setup.MD()
(but check, just in case, especially if you want to
change the define parameter in the mdp file)

Helper functions

The following functions are used under the hood and are mainly useful when
writing extensions to the module.

	
gromacs.setup.make_main_index(struct, selection='"Protein"', ndx='main.ndx', oldndx=None)

	Make index file with the special groups.

This routine adds the group __main__ and the group __environment__
to the end of the index file. __main__ contains what the user
defines as the central and most important parts of the
system. __environment__ is everything else.

The template mdp file, for instance, uses these two groups for T-coupling.

These groups are mainly useful if the default groups “Protein” and “Non-Protein”
are not appropriate. By using symbolic names such as __main__ one
can keep scripts more general.

	Returns

	groups is a list of dictionaries that describe the index groups. See
gromacs.cbook.parse_ndxlist() for details.

	Arguments

	
	structfilename

	structure (tpr, pdb, gro)

	selectionstring

	is a make_ndx command such as "Protein" or r DRG which
determines what is considered the main group for centering etc. It is
passed directly to make_ndx.

	ndxstring

	name of the final index file

	oldndxstring

	name of index file that should be used as a basis; if None
then the make_ndx default groups are used.

This routine is very dumb at the moment; maybe some heuristics will be
added later as could be other symbolic groups such as __membrane__.

	
gromacs.setup.check_mdpargs(d)

	Check if any arguments remain in dict d.

	
gromacs.setup.get_lipid_vdwradii(outdir='.', libdir=None)

	Find vdwradii.dat and add special entries for lipids.

See gromacs.setup.vdw_lipid_resnames for lipid
resnames. Add more if necessary.

	
gromacs.setup._setup_MD(dirname, deffnm='md', mdp='/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/md_OPLSAA.mdp', struct=None, top='top/system.top', ndx=None, mainselection='"Protein"', qscript='/home/docs/.cache/Python-Eggs/GromacsWrapper-0.7.0-py2.7.egg-tmp/gromacs/templates/local.sh', qname=None, startdir=None, mdrun_opts='', budget=None, walltime=0.3333333333333333, dt=0.002, runtime=1000.0, **mdp_kwargs)

	Generic function to set up a mdrun MD simulation.

See the user functions for usage.

Defined constants:

	
gromacs.setup.CONC_WATER = 55.345

	float(x) -> floating point number

Convert a string or number to a floating point number, if possible.

	
gromacs.setup.vdw_lipid_resnames = ['POPC', 'POPE', 'POPG', 'DOPC', 'DPPC', 'DLPC', 'DMPC', 'DPPG']

	list() -> new empty list
list(iterable) -> new list initialized from iterable’s items

	
gromacs.setup.vdw_lipid_atom_radii = {'C': 0.25, 'H': 0.09, 'N': 0.16, 'O': 0.155}

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

gromacs.scaling – Partial tempering

	Author

	Jan Domanski, @jandom

New in version 0.5.0.

Helper functions for scaling gromacs topologies; useful for setting up
simulations with Hamiltonian replicate exchange and partial tempering
(REST2).

	
gromacs.scaling.scale_dihedrals(mol, dihedrals, scale, banned_lines=None)

	Scale dihedral angles

	
gromacs.scaling.scale_impropers(mol, impropers, scale, banned_lines=None)

	Scale improper dihedrals

	
gromacs.scaling.partial_tempering(topfile='processed.top', outfile='scaled.top', banned_lines='', scale_lipids=1.0, scale_protein=1.0)

	Set up topology for partial tempering (REST2) replica exchange.

Changed in version 0.7.0: Use keyword arguments instead of an args Namespace object.

gromacs.qsub – utilities for batch submission systems

The module helps writing submission scripts for various batch submission
queuing systems. The known ones are listed stored as
QueuingSystem instances in
queuing_systems; append new ones to this list.

The working paradigm is that template scripts are provided (see
gromacs.config.templates) and only a few place holders are substituted
(using gromacs.cbook.edit_txt()).

User-supplied template scripts can be stored in
gromacs.config.qscriptdir (by default ~/.gromacswrapper/qscripts)
and they will be picked up before the package-supplied ones.

At the moment, some of the functions in gromacs.setup use this module
but it is fairly independent and could conceivably be used for a wider range of
projects.

Queuing system templates

The queuing system scripts are highly specific and you will need to add
your own. Templates should be shell scripts. Some parts of the
templates are modified by the
generate_submit_scripts() function. The “place
holders” that can be replaced are shown in the table below. Typically,
the place holders are either shell variable assignments or batch
submission system commands. The table shows SGE commands but PBS [http://www.mcs.anl.gov/research/projects/openpbs/] and
LoadLeveler [http://www-03.ibm.com/systems/software/loadleveler/index.html] have similar constructs; e.g. PBS commands start with
#PBS and LoadLeveller uses #@ with its own command keywords).

Substitutions in queuing system templates.

	place holder

	default

	replacement

	description

	regex

	#$ -N

	GMX_MD

	sgename

	job name

	/^#.*(-N|job_name)/

	#$ -l walltime=

	00:20:00

	walltime

	max run time

	/^#.*(-l walltime|wall_clock_limit)/

	#$ -A

	BUDGET

	budget

	account

	/^#.*(-A|account_no)/

	DEFFNM=

	md

	deffnm

	default gmx name

	/^ *DEFFNM=/

	STARTDIR=

	.

	startdir

	remote jobdir

	/^ *STARTDIR=/

	WALL_HOURS=

	0.33

	walltime h

	mdrun’s -maxh

	/^ *WALL_HOURS=/

	NPME=

	
	npme

	PME nodes

	/^ *NPME=/

	MDRUN_OPTS=

	“”

	mdrun_opts

	more options

	/^ *MDRUN_OPTS=/

Lines with place holders should not have any white space at the
beginning. The regular expression pattern (“regex”) is used to find
the lines for the replacement and the literal default values
(“default”) are replaced. (Exception: any value that follows an equals
sign “=” is replaced, regardless of the default value in the table
except for MDRUN_OPTS where only “” will be replace.) Not all
place holders have to occur in a template; for instance, if a queue
has no run time limitation then one would probably not include
walltime and WALL_HOURS place holders.

The line # JOB_ARRAY_PLACEHOLDER can be replaced by
generate_submit_array() to produce a “job array”
(also known as a “task array”) script that runs a large number of
related simulations under the control of a single queuing system
job. The individual array tasks are run from different sub
directories. Only queuing system scripts that are using the
bash shell are supported for job arrays at the moment.

A queuing system script must have the appropriate suffix to be properly
recognized, as shown in the table below.

Suffices for queuing system templates. Pure shell-scripts are only used to run locally.

	Queuing system

	suffix

	notes

	Sun Gridengine

	.sge

	Sun’s Sun Gridengine [http://gridengine.sunsource.net/]

	Portable Batch queuing system

	.pbs

	OpenPBS [http://www.mcs.anl.gov/research/projects/openpbs/] and PBS Pro [http://www.pbsworks.com/Product.aspx?id=1]

	LoadLeveler

	.ll

	IBM’s LoadLeveler [http://www-03.ibm.com/systems/software/loadleveler/index.html]

	bash script

	.bash, .sh

	Advanced bash scripting [http://tldp.org/LDP/abs/html/]

	csh script

	.csh

	avoid [http://www.grymoire.com/Unix/CshTop10.txt] csh [http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/]

Example queuing system script template for PBS

The following script is a usable PBS [http://www.mcs.anl.gov/research/projects/openpbs/] script for a super computer. It
contains almost all of the replacement tokens listed in the table
(indicated by ++++++).

#!/bin/bash
File name: ~/.gromacswrapper/qscripts/supercomputer.somewhere.fr_64core.pbs
#PBS -N GMX_MD
++++++
#PBS -j oe
#PBS -l select=8:ncpus=8:mpiprocs=8
#PBS -l walltime=00:20:00
++++++++

host: supercomputer.somewhere.fr
queuing system: PBS

set this to the same value as walltime; mdrun will stop cleanly
at 0.99 * WALL_HOURS
WALL_HOURS=0.33
++++

deffnm line is possibly modified by gromacs.setup
(leave it as it is in the template)
DEFFNM=md
++

TPR=${DEFFNM}.tpr
OUTPUT=${DEFFNM}.out
PDB=${DEFFNM}.pdb

MDRUN_OPTS=""
++

If you always want to add additional MDRUN options in this script then
you can either do this directly in the mdrun commandline below or by
constructs such as the following:
MDRUN_OPTS="-npme 24 $MDRUN_OPTS"

JOB_ARRAY_PLACEHOLDER
#++++++++++++++++++++++ leave the full commented line intact!

avoids some failures
export MPI_GROUP_MAX=1024
use hard coded path for time being
GMXBIN="/opt/software/SGI/gromacs/4.0.3/bin"
MPIRUN=/usr/pbs/bin/mpiexec
APPLICATION=$GMXBIN/mdrun_mpi

$MPIRUN $APPLICATION -stepout 1000 -deffnm ${DEFFNM} -s ${TPR} -c ${PDB} -cpi $MDRUN_OPTS -maxh ${WALL_HOURS} > $OUTPUT
rc=$?

dependent jobs will only start if rc == 0
exit $rc

Save the above script in ~/.gromacswrapper/qscripts under the name
supercomputer.somewhere.fr_64core.pbs. This will make the script
immediately usable. For example, in order to set up a production MD run with
gromacs.setup.MD() for this super computer one would use

gromacs.setup.MD(..., qscripts=['supercomputer.somewhere.fr_64core.pbs', 'local.sh'])

This will generate submission scripts based on
supercomputer.somewhere.fr_64core.pbs and also the default local.sh
that is provided with GromacsWrapper.

In order to modify MDRUN_OPTS one would use the additonal mdrun_opts
argument, for instance:

gromacs.setup.MD(..., qscripts=['supercomputer.somewhere.fr_64core.pbs', 'local.sh'],
 mdrun_opts="-v -npme 20 -dlb yes -nosum")

Currently there is no good way to specify the number of processors when
creating run scripts. You will need to provide scripts with different numbers
of cores hard coded or set them when submitting the scripts with command line
options to qsub.

Classes and functions

	
class gromacs.qsub.QueuingSystem(name, suffix, qsub_prefix, array_variable=None, array_option=None)

	Class that represents minimum information about a batch submission system.

Define a queuing system’s functionality

	Arguments

	
	name

	name of the queuing system, e.g. ‘Sun Gridengine’

	suffix

	suffix of input files, e.g. ‘sge’

	qsub_prefix

	prefix string that starts a qsub flag in a script, e.g. ‘#$’

	Keywords

	
	array_variable

	environment variable exported for array jobs, e.g.
‘SGE_TASK_ID’

	array_option

	qsub option format string to launch an array (e.g. ‘-t %d-%d’)

	
array(directories)

	Return multiline string for simple array jobs over directories.

Warning

The string is in bash and hence the template must also
be bash (and not csh or sh).

	
array_flag(directories)

	Return string to embed the array launching option in the script.

	
flag(*args)

	Return string for qsub flag args prefixed with appropriate inscript prefix.

	
has_arrays()

	True if known how to do job arrays.

	
isMine(scriptname)

	Primitive queuing system detection; only looks at suffix at the moment.

	
gromacs.qsub.generate_submit_scripts(templates, prefix=None, deffnm='md', jobname='MD', budget=None, mdrun_opts=None, walltime=1.0, jobarray_string=None, startdir=None, npme=None, **kwargs)

	Write scripts for queuing systems.

This sets up queuing system run scripts with a simple search and replace in
templates. See gromacs.cbook.edit_txt() for details. Shell scripts
are made executable.

	Arguments

	
	templates

	Template file or list of template files. The “files” can also be names
or symbolic names for templates in the templates directory. See
gromacs.config for details and rules for writing templates.

	prefix

	Prefix for the final run script filename; by default the filename will be
the same as the template. [None]

	dirname

	Directory in which to place the submit scripts. [.]

	deffnm

	Default filename prefix for mdrun -deffnm [md]

	jobname

	Name of the job in the queuing system. [MD]

	budget

	Which budget to book the runtime on [None]

	startdir

	Explicit path on the remote system (for run scripts that need to cd
into this directory at the beginning of execution) [None]

	mdrun_opts

	String of additional options for mdrun.

	walltime

	Maximum runtime of the job in hours. [1]

	npme

	number of PME nodes

	jobarray_string

	Multi-line string that is spliced in for job array functionality
(see gromacs.qsub.generate_submit_array(); do not use manually)

	kwargs

	all other kwargs are ignored

	Returns

	list of generated run scripts

	
gromacs.qsub.generate_submit_array(templates, directories, **kwargs)

	Generate a array job.

	For each work_dir in directories, the array job will

	
	cd into work_dir

	run the job as detailed in the template

It will use all the queuing system directives found in the
template. If more complicated set ups are required, then this
function cannot be used.

	Arguments

	
	templates

	Basic template for a single job; the job array logic is spliced into
the position of the line

JOB_ARRAY_PLACEHOLDER

The appropriate commands for common queuing systems (Sun Gridengine, PBS)
are hard coded here. The queuing system is detected from the suffix of
the template.

	directories

	List of directories under dirname. One task is set up for each
directory.

	dirname

	The array script will be placed in this directory. The directories
must be located under dirname.

	kwargs

	See gromacs.setup.generate_submit_script() for details.

	
gromacs.qsub.detect_queuing_system(scriptfile)

	Return the queuing system for which scriptfile was written.

	
gromacs.qsub.queuing_systems = [<Sun Gridengine QueuingSystem instance>, <PBS QueuingSystem instance>, <LoadLeveler QueuingSystem instance>]

	list() -> new empty list
list(iterable) -> new list initialized from iterable’s items

Alternatives to GromacsWrapper

GromacsWrapper is simplistic; in particular it does not directly
link to the Gromacs libraries but relies on python wrappers to call
gromacs tools. Some people find this very crude (the author
included). Other people have given more thought to the problem and you
are encouraged to see if their efforts speed up your work more than
does GromacsWrapper.

	MDAnalysis [http://mdanalysis.org] (N. Michaud-Agrawal, E. J. Dennning, and O. Beckstein)

	Reads various trajectories (dcd, xtc, trr) and makes coordinates
available as numpy [http://numpy.scipy.org] arrays. It also has a fairly sophisticated
selection language, similar to Charmm [http://www.charmm.org] or VMD [http://www.ks.uiuc.edu/Research/vmd/].

	ParmEd [http://parmed.github.io/ParmEd/html/index.html]

	A general tool for working with topology files for all the popular
MD codes, including the parmed.gromacs [http://parmed.github.io/ParmEd/html/api/parmed/parmed.gromacs.html] module for ITP and TOP
files.

	gmxapi [https://github.com/kassonlab/gmxapi] (M.E. Irrgang, J.M. Hays, and P.M. Kasson)

	gmxapi provides interfaces for managing and extending molecular
dynamics simulation workflows. In this repository, a Python package
provides the gmx module for high-level interaction with
GROMACS. gmx.core provides Python bindings to the gmxapi C++
GROMACS external API.

Irrgang, M. E., Hays, J. M., & Kasson, P. M. gmxapi: a high-level
interface for advanced control and extension of molecular dynamics
simulations. Bioinformatics 2018. DOI:
10.1093/bioinformatics/bty484 [https://doi.org/10.1093/bioinformatics/bty484]

	pymacs [http://wwwuser.gwdg.de/~dseelig/pymacs.html] (Daniel Seeliger)

	pymacs is a python module for dealing with structure files and
trajectory data from the GROMACS molecular dynamics package. It has
interfaces to some gromacs functions and uses gromacs routines for
command line parsing, reading and writing of structure files
(pdb,gro,…) and for reading trajectory data (only xtc at the
moment). It is quite useful to write python scripts for simulation
setup and analysis that can be combined with other powerful python
packages like numpy, scipy or plotting libraries like pylab. It has
an intuitive data structure (Model –> Chain –> Molecule
–> Atom) and allows modifications at all levels like

	Changing of atom, residue and chain properties (name, coordinate, b-factor,…

	Deleting and inserting atoms, residues, chains

	Straightforward selection of structure subsets

	Structure building from sequence

	Handling gromacs index files

	gmxscript [https://github.com/pslacerda/gmx] (Pedro Lacerda)

	gmxscript is a framework for Gromacs simulations. Its main goal
is make simulation protocols easily reproducible and to define
canonical steps to perform and analyze a simulation. The commands
are stored in very readable and structured Python file that requires
no programming knowledge except syntax.

	Gromacs XTC Library [http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library]

	Version 1.1 of the separate xtc/trr library contains example code
to access a Gromacs trajectory from python. It appears to be based
on grompy [http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html] (also see below).

	various implementations of python wrappers

	See the discussion on the gmx-developers mailinglist: check the
thread [gmx-developers] Python interface for Gromacs [http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003179.html]

	grompy [http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html] (René Pool, Martin Hoefling, Roland Schulz)

	uses ctypes [http://docs.python.org/library/ctypes.html] to wrap libgmx:

“Here’s a bunch of code I wrote to wrap libgmx with ctypes and make use
of parts of gromacs functionality. My application for this was the
processing of a trajectories using gromac’s pbc removal and fitting
routines as well as reading in index groups etc. It’s very incomplete
atm and also focused on wrapping libgmx with all gromacs types and
definitions…

… so python here feels a bit like lightweight c-code glueing
together gromacs library functions :-)

The attached code lacks a bit of documentation, but I included a
test.py as an example using it.”

Roland Schulz added code:

“I added a little bit wrapper code to easily access the atom
information in tpx. I attached the version. It is backward
compatible …”

A working grompy tar ball [http://article.gmane.org/gmane.science.biology.gromacs.devel/1185] (with Roland’s enhancements) is cached
at gmane.org and the latest sources are hosted at
https://github.com/GromPy

	LOOS [http://loos.sourceforge.net] (Grossfield lab [http://membrane.urmc.rochester.edu/Grossfield_Lab/Welcome.html] at the University of Rochester)

	The idea behind LOOS (Lightweight Object-Oriented Structure
library) is to provide a lightweight C++ library for analysis of
molecular dynamics simulations. This includes parsing a number of
PDB variants, as well as the native system description and
trajectory formats for CHARMM, NAMD, and Amber. LOOS is not intended
to be an all-encompassing library and it is primarily geared towards
reading data in and processing rather than manipulating the files
and structures and writing them out.

The LOOS documentation [http://loos.sourceforge.net/Docs/] is well written and comprehensive and the
code is published under the GPL [http://www.gnu.org/licenses/].

	copernicus [http://git.copernicus-computing.org/]

	Copernicus is a Python-based client-server network that allows
running of large and complicated MD simulation workflows. It
supports Gromacs [http://www.gromacs.org] (grompp and mdrun).

	VMD [http://www.ks.uiuc.edu/Research/vmd/] (Schulten lab [http://www.ks.uiuc.edu/] at UIUC)

	VMD is a great analysis tool; the only downside is that (at the
moment) trajectories have to fit into memory. In some cases this can
be circumvented by reading a trajectory frame by frame using the
bigdcd [http://www.ks.uiuc.edu/Research/vmd/script_library/scripts/bigdcd/] script (which might also work for Gromacs xtcs).

	JGromacs [http://sbcb.bioch.ox.ac.uk/jgromacs/] (Márton Münz and Philip C Biggin)

	JGromacs is a Java library designed to facilitate the development
of cross-platform analysis applications for Molecular Dynamics (MD)
simulations. The package contains parsers for file formats applied
by GROMACS. It provides a multilevel object-oriented representation
of simulation data to integrate and interconvert sequence,
structure and dynamics information. In addititon, a basic analysis
toolkit is included in the package. The programmer is also provided
with simple tools (e.g. XML-based configuration) to create
applications with a user interface resembling the command-line UI
of Gromacs applications.

Please open an issue in the issue tracker [https://github.com/Becksteinlab/GromacsWrapper/issues] to let us know of other efforts so that
they can be added here. Thanks.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gromacs	

 	
 	
 gromacs.cbook	

 	
 	
 gromacs.collections	

 	
 	
 gromacs.config	

 	
 	
 gromacs.core	

 	
 	
 gromacs.environment	

 	
 	
 gromacs.fileformats.blocks	

 	
 	
 gromacs.fileformats.convert	

 	
 	
 gromacs.fileformats.mdp	

 	
 	
 gromacs.fileformats.ndx	

 	
 	
 gromacs.fileformats.top	

 	
 	
 gromacs.fileformats.xpm	

 	
 	
 gromacs.fileformats.xvg	

 	
 	
 gromacs.qsub	

 	
 	
 gromacs.run	

 	
 	
 gromacs.scaling	

 	
 	
 gromacs.setup	

 	
 	
 gromacs.tools	

 	
 	
 gromacs.utilities	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

Symbols

 	
 	$HOME

_

 	
 	__call__() (gromacs.core.Command method)

 	
 	_setup_MD() (in module gromacs.setup)

A

 	
 	activate_subplot() (in module gromacs.utilities)

 	active (gromacs.fileformats.convert.Autoconverter attribute), [1]

 	add_mdp_includes() (in module gromacs.cbook)

 	all_frames (gromacs.cbook.Frames attribute)

 	amino_acid_codes (in module gromacs.utilities)

 	AngleType (class in gromacs.fileformats.blocks)

 	anumb_to_atom() (gromacs.fileformats.blocks.Molecule method)

 	anyopen() (in module gromacs.utilities)

 	array (gromacs.fileformats.xpm.XPM attribute)

 	(gromacs.fileformats.xvg.XVG attribute)

 	
 	array() (gromacs.qsub.QueuingSystem method)

 	array_flag() (gromacs.qsub.QueuingSystem method)

 	asiterable() (in module gromacs.utilities)

 	assemble_topology() (gromacs.fileformats.top.SystemToGroTop method)

 	Atom (class in gromacs.fileformats.blocks)

 	AtomType (class in gromacs.fileformats.blocks)

 	AttributeDict (class in gromacs.utilities)

 	autoconvert() (in module gromacs.utilities)

 	Autoconverter (class in gromacs.fileformats.convert)

 	Autoconverter.convert() (in module gromacs.fileformats.convert)

 	AutoCorrectionWarning

B

 	
 	BadParameterWarning

 	besttype() (in module gromacs.fileformats.convert)

 	
 	BondType (class in gromacs.fileformats.blocks)

 	break_array() (in module gromacs.fileformats.xvg)

C

 	
 	cat() (in module gromacs.cbook)

 	center_fit() (gromacs.cbook.Transformer method)

 	cfg (in module gromacs.config)

 	check_file_exists() (gromacs.utilities.FileUtils method)

 	check_mdpargs() (in module gromacs.setup)

 	check_mdrun_success() (in module gromacs.run)

 	check_setup() (in module gromacs.config)

 	check_success() (gromacs.run.MDrunner method)

 	cleanup() (gromacs.cbook.Frames method)

 	CMapType (class in gromacs.fileformats.blocks)

 	col() (gromacs.fileformats.xpm.XPM method)

 	Collection (class in gromacs.collections)

 	
 	combine() (gromacs.cbook.IndexBuilder method)

 	Command (class in gromacs.core)

 	commandline() (gromacs.core.GromacsCommand method)

 	(gromacs.run.MDrunner method)

 	communicate() (gromacs.core.PopenWithInput method)

 	CONC_WATER (in module gromacs.setup)

 	configdir (in module gromacs.config)

 	CONFIGNAME (in module gromacs.config)

 	configuration (gromacs.config.GMXConfigParser attribute)

 	(in module gromacs.config)

 	ConstraintType (class in gromacs.fileformats.blocks)

 	convert_aa_code() (in module gromacs.utilities)

 	create_portable_topology() (in module gromacs.cbook)

D

 	
 	decimate() (gromacs.fileformats.xvg.XVG method)

 	decimate_circmean() (gromacs.fileformats.xvg.XVG method)

 	decimate_error() (gromacs.fileformats.xvg.XVG method)

 	decimate_max() (gromacs.fileformats.xvg.XVG method)

 	decimate_mean() (gromacs.fileformats.xvg.XVG method)

 	decimate_min() (gromacs.fileformats.xvg.XVG method)

 	decimate_percentile() (gromacs.fileformats.xvg.XVG method)

 	
 	decimate_rms() (gromacs.fileformats.xvg.XVG method)

 	decimate_smooth() (gromacs.fileformats.xvg.XVG method)

 	defaults (in module gromacs.config)

 	delete_frames() (gromacs.cbook.Frames method)

 	detect_queuing_system() (in module gromacs.qsub)

 	DihedralType (class in gromacs.fileformats.blocks)

 	doc() (gromacs.environment.Flags method)

E

 	
 	edit_mdp() (in module gromacs.cbook), [1]

 	edit_txt() (in module gromacs.cbook)

 	em_schedule() (in module gromacs.setup)

 	energy_minimize() (in module gromacs.setup)

 	
 environment variable

 	$HOME

 	GMXBIN

 	GMXDATA

 	GROMACSWRAPPER_SUPPRESS_SETUP_CHECK, [1], [2]

 	GW_START_LOGGING

 	LD_LIBRARY_PATH

 	PATH, [1], [2], [3], [4]

 	
 	error (gromacs.fileformats.xvg.XVG attribute)

 	errorbar() (gromacs.fileformats.xvg.XVG method)

 	Exclusion (class in gromacs.fileformats.blocks)

 	extract() (gromacs.cbook.Frames method)

F

 	
 	failuremode (gromacs.core.GromacsCommand attribute)

 	filename() (gromacs.utilities.FileUtils method)

 	FileUtils (class in gromacs.utilities)

 	find_executables() (in module gromacs.tools)

 	find_first() (in module gromacs.utilities)

 	find_gromacs_command() (in module gromacs.run)

 	firstof() (in module gromacs.utilities)

 	
 	fit() (gromacs.cbook.Transformer method)

 	Flag (class in gromacs.environment)

 	flag() (gromacs.qsub.QueuingSystem method)

 	Flags (class in gromacs.environment)

 	flags (in module gromacs.environment)

 	flagsDocs (class in gromacs.environment)

 	Frames (class in gromacs.cbook)

G

 	
 	generate_submit_array() (in module gromacs.qsub)

 	generate_submit_scripts() (in module gromacs.qsub)

 	get() (gromacs.fileformats.ndx.NDX method)

 	get_configuration() (in module gromacs.config)

 	get_double_or_single_prec_mdrun() (in module gromacs.run)

 	get_lipid_vdwradii() (in module gromacs.setup)

 	get_ndx_groups() (in module gromacs.cbook)

 	get_template() (in module gromacs.config)

 	get_templates() (in module gromacs.config)

 	get_volume() (in module gromacs.cbook), [1]

 	getLogLevel() (gromacs.config.GMXConfigParser method)

 	getpath() (gromacs.config.GMXConfigParser method)

 	gmx_resid() (gromacs.cbook.IndexBuilder method)

 	GMXBIN

 	GMXConfigParser (class in gromacs.config)

 	GMXDATA

 	gromacs (module)

 	gromacs.cbook (module)

 	gromacs.collections (module)

 	gromacs.config (module)

 	gromacs.core (module)

 	gromacs.environment (module)

 	gromacs.fileformats.blocks (module)

 	
 	gromacs.fileformats.convert (module)

 	gromacs.fileformats.mdp (module)

 	gromacs.fileformats.ndx (module)

 	gromacs.fileformats.top (module)

 	gromacs.fileformats.xpm (module)

 	gromacs.fileformats.xvg (module)

 	gromacs.qsub (module)

 	gromacs.run (module)

 	gromacs.scaling (module)

 	gromacs.setup (module)

 	gromacs.tools (module)

 	gromacs.utilities (module)

 	GromacsCommand (class in gromacs.core)

 	GromacsCommandMultiIndex (class in gromacs.tools)

 	GromacsError

 	GromacsFailureWarning

 	GromacsImportWarning

 	GromacsToolLoadingError

 	GromacsValueWarning

 	GROMACSWRAPPER_SUPPRESS_SETUP_CHECK, [1], [2]

 	grompp_qtot() (in module gromacs.cbook), [1]

 	groups (gromacs.fileformats.ndx.NDX attribute)

 	GW_START_LOGGING

H

 	
 	has_arrays() (gromacs.qsub.QueuingSystem method)

 	
 	help() (gromacs.core.Command method)

 	(gromacs.core.GromacsCommand method)

I

 	
 	ImproperType (class in gromacs.fileformats.blocks)

 	in_dir() (in module gromacs.utilities)

 	IndexBuilder (class in gromacs.cbook)

 	IndexSet (class in gromacs.fileformats.ndx)

 	infix_filename() (gromacs.utilities.FileUtils method)

 	
 	InteractionType (class in gromacs.fileformats.blocks)

 	isMine() (gromacs.qsub.QueuingSystem method)

 	items() (gromacs.environment.Flags method)

 	iterable() (in module gromacs.utilities)

 	iteritems() (gromacs.environment.Flags method)

 	itervalues() (gromacs.environment.Flags method)

J

 	
 	join() (gromacs.fileformats.ndx.uniqueNDX method)

K

 	
 	keep_protein_only() (gromacs.cbook.Transformer method)

L

 	
 	LD_LIBRARY_PATH

 	load_v4_tools() (in module gromacs.tools)

 	load_v5_tools() (in module gromacs.tools)

 	
 	logfilename (in module gromacs.config)

 	loglevel_console (in module gromacs.config)

 	loglevel_file (in module gromacs.config)

 	LowAccuracyWarning

M

 	
 	ma (gromacs.fileformats.xvg.XVG attribute)

 	make_main_index() (in module gromacs.setup)

 	make_ndx_captured() (in module gromacs.cbook)

 	make_valid_identifier() (in module gromacs.tools)

 	max (gromacs.fileformats.xvg.XVG attribute)

 	MD() (in module gromacs.setup)

 	MD_restrained() (in module gromacs.setup)

 	MDP (class in gromacs.fileformats.mdp)

 	MDrunner (class in gromacs.run)

 	
 	MDrunnerDoublePrecision (class in gromacs.run)

 	MDrunnerMpich2Smpd (class in gromacs.run)

 	MDrunnerOpenMP (class in gromacs.run)

 	mean (gromacs.fileformats.xvg.XVG attribute)

 	merge_ndx() (in module gromacs.tools)

 	min (gromacs.fileformats.xvg.XVG attribute)

 	MissingDataError

 	MissingDataWarning

 	Molecule (class in gromacs.fileformats.blocks)

 	mpicommand() (gromacs.run.MDrunner method)

N

 	
 	NDX (class in gromacs.fileformats.ndx)

 	ndxlist (gromacs.fileformats.ndx.NDX attribute)

 	
 	NonbondedParamType (class in gromacs.fileformats.blocks)

 	number_pdbs() (in module gromacs.utilities)

O

 	
 	openany() (in module gromacs.utilities)

 	
 	outfile() (gromacs.cbook.Transformer method)

P

 	
 	Param (class in gromacs.fileformats.blocks)

 	parse() (gromacs.fileformats.xpm.XPM method)

 	(gromacs.fileformats.xvg.XVG method)

 	parse_ndxlist() (in module gromacs.cbook), [1]

 	ParseError

 	partial_tempering() (in module gromacs.scaling)

 	PATH, [1], [2], [3], [4]

 	path (in module gromacs.config)

 	
 	plot() (gromacs.fileformats.xvg.XVG method)

 	plot_coarsened() (gromacs.fileformats.xvg.XVG method)

 	Popen() (gromacs.core.Command method)

 	(gromacs.core.GromacsCommand method)

 	PopenWithInput (class in gromacs.core)

 	posthook() (gromacs.run.MDrunner method)

 	prehook() (gromacs.run.MDrunner method)

 	prop() (gromacs.environment.Flag method)

Q

 	
 	qscript_template (in module gromacs.config)

 	qscriptdir (in module gromacs.config)

 	
 	queuing_systems (in module gromacs.qsub)

 	QueuingSystem (class in gromacs.qsub)

R

 	
 	read() (gromacs.fileformats.mdp.MDP method)

 	(gromacs.fileformats.ndx.NDX method)

 	(gromacs.fileformats.xpm.XPM method)

 	(gromacs.fileformats.xvg.XVG method)

 	realpath() (in module gromacs.utilities)

 	register() (gromacs.environment.Flags method)

 	remove_legend() (in module gromacs.utilities)

 	
 	renumber_atoms() (gromacs.fileformats.blocks.Molecule method)

 	rmsd_backbone() (in module gromacs.cbook)

 	rp() (gromacs.cbook.Transformer method)

 	run() (gromacs.core.Command method)

 	(gromacs.core.GromacsCommand method)

 	(gromacs.run.MDrunner method)

 	run_check() (gromacs.run.MDrunner method)

S

 	
 	scale_dihedrals() (in module gromacs.scaling)

 	scale_impropers() (in module gromacs.scaling)

 	set() (gromacs.fileformats.ndx.NDX method)

 	(gromacs.fileformats.xvg.XVG method)

 	set_correlparameters() (gromacs.fileformats.xvg.XVG method)

 	set_gmxrc_environment() (in module gromacs.config)

 	setdefault() (gromacs.environment.Flags method)

 	(gromacs.fileformats.ndx.NDX method)

 	SettleType (class in gromacs.fileformats.blocks)

 	
 	setup() (in module gromacs.config)

 	size() (gromacs.fileformats.ndx.NDX method)

 	sizes (gromacs.fileformats.ndx.NDX attribute)

 	solvate() (in module gromacs.setup)

 	std (gromacs.fileformats.xvg.XVG attribute)

 	strip_fit() (gromacs.cbook.Transformer method)

 	strip_water() (gromacs.cbook.Transformer method)

 	System (class in gromacs.fileformats.blocks)

 	SystemToGroTop (class in gromacs.fileformats.top)

T

 	
 	tc (gromacs.fileformats.xvg.XVG attribute)

 	templates (in module gromacs.config)

 	templatesdir (in module gromacs.config)

 	Timedelta (class in gromacs.utilities)

 	to_unicode() (in module gromacs.fileformats.convert)

 	tool_factory() (in module gromacs.tools)

 	TOP (class in gromacs.fileformats.top)

 	
 	topology() (in module gromacs.setup)

 	transform_args() (gromacs.core.Command method)

 	(gromacs.core.GromacsCommand method)

 	Transformer (class in gromacs.cbook)

 	trj_compact() (in module gromacs.cbook)

 	trj_fitandcenter() (in module gromacs.cbook)

 	trj_xyfitted() (in module gromacs.cbook)

U

 	
 	uncomment() (gromacs.fileformats.xpm.XPM static method)

 	uniqueNDX (class in gromacs.fileformats.ndx)

 	unlink_f() (in module gromacs.utilities)

 	unlink_gmx() (in module gromacs.utilities)

 	
 	unlink_gmx_backups() (in module gromacs.utilities)

 	unquote() (gromacs.fileformats.xpm.XPM static method)

 	update() (gromacs.environment.Flags method)

 	UsageWarning

V

 	
 	values() (gromacs.environment.Flags method)

 	vdw_lipid_atom_radii (in module gromacs.setup)

 	
 	vdw_lipid_resnames (in module gromacs.setup)

 	VirtualSites3Type (class in gromacs.fileformats.blocks)

W

 	
 	which() (in module gromacs.utilities)

 	withextsep() (in module gromacs.utilities)

 	write() (gromacs.fileformats.mdp.MDP method)

 	(gromacs.fileformats.ndx.NDX method)

 	(gromacs.fileformats.top.TOP method)

 	(gromacs.fileformats.xvg.XVG method)

X

 	
 	XPM (class in gromacs.fileformats.xpm)

 	
 	xvalues (gromacs.fileformats.xpm.XPM attribute)

 	XVG (class in gromacs.fileformats.xvg)

Y

 	
 	yvalues (gromacs.fileformats.xpm.XPM attribute)

gromacs.run – Running simulations

Helper functions and classes around gromacs.tools.Mdrun.

	
class gromacs.run.MDrunner(dirname='.', **kwargs)

	A class to manage running mdrun in various ways.

In order to do complicated multiprocessor runs with mpiexec or similar you
need to derive from this class and override

	MDrunner.mdrun with the path to the mdrun executable

	MDrunner.mpiexec with the path to the MPI launcher

	MDrunner.mpicommand() with a function that returns the mpi command as a list

In addition there are two methods named prehook() and
posthook() that are called right before and after the process is
started. If they are overriden appropriately then they can be used to set
up a mpi environment.

The run() method can take arguments for the mpiexec
launcher but it can also be used to supersede the arguments for
mdrun.

The actual mdrun command is set in the class-level attribute
mdrun. This can be a single string or a sequence (tuple) of
strings. On instantiation, the first entry in mdrun that can be
found on the PATH is chosen (with
find_gromacs_command()). For example, gmx mdrun from
Gromacs 5.x but just mdrun for Gromacs 4.6.x. Similarly, alternative
executables (such as double precision) need to be specified here
(e.g. ("mdrun_d", "gmx_d mdrun")).

Note

Changing mdrun arguments permanently changes the
default arguments for this instance of MDrunner. (This
is arguably a bug.)

Changed in version 0.5.1: Added detection of bare Gromacs commands (Gromacs 4.6.x) or commands run through
gmx (Gromacs 5.x).

Changed in version 0.6.0: Changed syntax for Gromacs 5.x commands.

Set up a simple run with mdrun.

	Keywords

	
	dirname

	Change to this directory before launching the job. Input
files must be supplied relative to this directory.

	keywords

	All other keword arguments are used to construct the
mdrun commandline. Note that only
keyword arguments are allowed.

	
check_success()

	Check if mdrun finished successfully.

(See check_mdrun_success() for details)

	
commandline(**mpiargs)

	Returns simple command line to invoke mdrun.

If mpiexec is set then mpicommand() provides the mpi
launcher command that prefixes the actual mdrun invocation:

mpiexec [mpiargs] mdrun [mdrun-args]

The mdrun-args are set on initializing the class. Override
mpicommand() to fit your system if the simple default
OpenMP launcher is not appropriate.

	
mpicommand(*args, **kwargs)

	Return a list of the mpi command portion of the commandline.

	Only allows primitive mpi at the moment:

	mpiexec -n ncores mdrun mdrun-args

(This is a primitive example for OpenMP. Override it for more
complicated cases.)

	
posthook(**kwargs)

	Called directly after the process terminated (also if it failed).

	
prehook(**kwargs)

	Called directly before launching the process.

	
run(pre=None, post=None, mdrunargs=None, **mpiargs)

	Execute the mdrun command (possibly as a MPI command) and run the simulation.

	Keywords

	
	pre

	a dictionary containing keyword arguments for the prehook()

	post

	a dictionary containing keyword arguments for the posthook()

	mdrunargs

	a dictionary with keyword arguments for mdrun which supersede
and update the defaults given to the class constructor

	mpiargs

	all other keyword arguments that are processed by mpicommand()

	
run_check(**kwargs)

	Run mdrun and check if run completed when it finishes.

This works by looking at the mdrun log file for ‘Finished
mdrun on node’. It is useful to implement robust simulation
techniques.

	Arguments

	kwargs are keyword arguments that are passed on to
run() (typically used for mpi things)

	Returns

	
	True if run completed successfully

	False otherwise

	
class gromacs.run.MDrunnerDoublePrecision(dirname='.', **kwargs)

	Manage running mdrun_d.

Set up a simple run with mdrun.

	Keywords

	
	dirname

	Change to this directory before launching the job. Input
files must be supplied relative to this directory.

	keywords

	All other keword arguments are used to construct the
mdrun commandline. Note that only
keyword arguments are allowed.

Example implementations

	
class gromacs.run.MDrunnerOpenMP(dirname='.', **kwargs)

	Manage running mdrun as an OpenMP [http://openmp.org/wp/] multiprocessor job.

Set up a simple run with mdrun.

	Keywords

	
	dirname

	Change to this directory before launching the job. Input
files must be supplied relative to this directory.

	keywords

	All other keword arguments are used to construct the
mdrun commandline. Note that only
keyword arguments are allowed.

	
class gromacs.run.MDrunnerMpich2Smpd(dirname='.', **kwargs)

	Manage running mdrun as mpich2 [http://www.mcs.anl.gov/research/projects/mpich2/] multiprocessor job with the SMPD mechanism.

Set up a simple run with mdrun.

	Keywords

	
	dirname

	Change to this directory before launching the job. Input
files must be supplied relative to this directory.

	keywords

	All other keword arguments are used to construct the
mdrun commandline. Note that only
keyword arguments are allowed.

Helper functions

	
gromacs.run.check_mdrun_success(logfile)

	Check if mdrun finished successfully.

Analyses the output from mdrun in logfile. Right now we are
simply looking for the line “Finished mdrun on node” in the last 1kb of
the file. (The file must be seeakable.)

	Arguments

	
	logfilefilename

	Logfile produced by mdrun.

	Returns

	True if all ok, False if not finished, and
None if the logfile cannot be opened

	
gromacs.run.get_double_or_single_prec_mdrun()

	Return double precision mdrun or fall back to single precision.

This convenience function tries gromacs.mdrun_d() first and
if it cannot run it, falls back to gromacs.mdrun() (without
further checking).

New in version 0.5.1.

	
gromacs.run.find_gromacs_command(commands)

	Return driver and name of the first command that can be found on PATH

 _static/ajax-loader.gif

_images/xvg_decimated.png
15

raw data

1000 points

_static/GromacsWrapper_logo_200x200.png
| A
v

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 GromacsWrapper — a Python framework for Gromacs

 		
 Installation

 		
 README: GromacsWrapper

 		
 Licence

 		
 Citing

 		
 Download and Availability

 		
 Contact

 		
 INSTALL

 		
 Quick installation instructions

 		
 Manual Download

 		
 Source code access

 		
 Requirements

 		
 Configuration

 		
 Basic options

 		
 More options

 		
 GromacsWrapper package

 		
 gromacs – GromacsWrapper Package Overview

 		
 Modules

 		
 Examples

 		
 Warnings and Exceptions

 		
 Logging

 		
 Version

 		
 Gromacs core modules

 		
 gromacs.core – Core functionality

 		
 gromacs.config – Configuration for GromacsWrapper

 		
 gromacs.environment – Run time modification of behaviour

 		
 gromacs.formats – Accessing various files

 		
 gromacs.utilities – Helper functions and classes

 		
 analysis.collections – Handling of groups of simulation instances

 		
 gromacs.tools – Gromacs commands classes

 		
 Gromacs building blocks

 		
 gromacs.cbook – Gromacs Cook Book

 		
 gromacs.setup – Setting up a Gromacs MD run

 		
 gromacs.scaling – Partial tempering

 		
 gromacs.qsub – utilities for batch submission systems

 		
 Alternatives to GromacsWrapper

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

