
GromacsWrapper Documentation
Release 0.8.5+23.g463820c.dirty

Oliver Beckstein

November 20, 2023

CONTENTS

1 Getting started 3

2 License 5

3 Citing 7

4 Contact 9
4.1 Installation . 9
4.2 Quick Start . 10
4.3 GromacsWrapper Overview . 12
4.4 Configuration . 15
4.5 API documentation . 17
4.6 Alternatives to GromacsWrapper . 103

Bibliography 107

Python Module Index 109

Index 111

i

ii

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Release
0.8.5+23.g463820c.dirty

Date
November 20, 2023

GromacsWrapper is a pure Python package that wraps system calls to GROMACS tools into thin classes. This allows
for fairly seamless integration of the GROMACS tools into Python scripts. This is generally superior to shell scripts
because of Python’s better error handling and superior data structures. It also allows for modularization and code re-
use. In addition, commands, warnings and errors are logged to a file so that there exists a complete history of what has
been done.

GROMACS versions 4.6.x, 2016.x, 2018.x, 2019.x, 2020.x, 2021.x, 2022.x, and 2023.x are all supported. Gromac-
sWrapper detects your Gromacs tools and provides them as gromacs.grompp(), gromacs.mdrun(), etc, regardless
of your Gromacs version, which allows one to write scripts that are broadly Gromacs-version agnostic. Source your
GMXRC file or make the gmx binary (for versions 5.x) or all the GROMACS tools available on your PATH for Gromac-
sWrapper to find the GROMACS installation.

Warning: Although GromacsWrapper has been used in published research over the last 10 years or so, there is no
guarantee that any of the defaults chosen are suitable for any particular project or simulation setup.

It is your responsibility to ensure that you are running simulations with sensible parameters. Provide appro-
priate template files instead of the bundled defaults and check the logger output!

Please report bugs in the issue tracker and go to the discussions forum for questions.

Contributions are very welcome — start by raising an issue in the issue tracker to describe what feature you’re adding
or what bug you’re fixing.

See also:

Other approaches to interfacing Python and GROMACS are listed under Alternatives to GromacsWrapper.

CONTENTS 1

http://www.gromacs.org
https://www.python.org
http://www.gromacs.org
https://github.com/Becksteinlab/GromacsWrapper/issues
https://github.com/Becksteinlab/GromacsWrapper/discussions
https://github.com/Becksteinlab/GromacsWrapper/issues
https://www.python.org
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

See Installation for supported versions of Python and download and installation instructions. The Quick Start provides
a brief example of how to use GromacsWrapper in the most basic fashion.

The source code itself is available in the GromacsWrapper git repository.

You also need to have a version of GROMACS installed.

3

https://github.com/Becksteinlab/GromacsWrapper
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

4 Chapter 1. Getting started

CHAPTER

TWO

LICENSE

The GromacsWrapper package is made available under the terms of the GNU Public License v3 (or any higher version
at your choice) except as noted below. See the file COPYING for the licensing terms for all modules.

5

http://www.gnu.org/licenses/gpl.html

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

6 Chapter 2. License

CHAPTER

THREE

CITING

GromacsWrapper was written by Oliver Beckstein with contributions from many other people. Please see the file
AUTHORS for all the names.

If you find this package useful and use it in published work I’d be grateful if it was acknowledged in text as

“. . . used GromacsWrapper (Oliver Beckstein et al, https://github.com/Becksteinlab/GromacsWrapper
doi: 10.5281/zenodo.17901)”

or in the Acknowledgements section.

Thank you.

7

https://zenodo.org/badge/latestdoi/13219/Becksteinlab/GromacsWrapper
https://raw.githubusercontent.com/Becksteinlab/GromacsWrapper/main/AUTHORS
https://github.com/Becksteinlab/GromacsWrapper

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

8 Chapter 3. Citing

CHAPTER

FOUR

CONTACT

Please use the issue tracker to report bugs, installation problems, and feature requests (mention @orbeckst in the issue
report) and use the discussions forum for general questions.

4.1 Installation

This document should help you to install the GromacsWrapper package. Please raise and issue in the Issue Tracker
if problems occur or if you have suggestions on how to improve the package or these instructions. Ask for help in the
discussions forum.

4.1.1 pip installation

The latest release can be directly installed with pip:

pip install GromacsWrapper

(This will automatically download and install the latest version of GromacsWrapper from PyPi.)

4.1.2 conda installation

New in version 0.8.1.

Changed in version 0.8.3: Package migrated from bioconda to conda-forge.

Install as a conda-forge package with the conda package manager from the conda-forge channel

conda install -c conda-forge gromacswrapper

The conda-forge channel should be explicitly specified if you are not already using it by default.

Note: The conda-forge channel also contains conda-forge packages for GROMACS (earlier versions 2021.x are
available as GROMACS bioconda packages), which can be used for testing and system setup; for running in a high-
performance environment you are advised to carefully benchmark and possibly compile a version of GROMACS that
is tuned for the system.

9

https://github.com/Becksteinlab/GromacsWrapper/issues
https://github.com/Becksteinlab/GromacsWrapper/discussions
https://github.com/Becksteinlab/GromacsWrapper/issues
https://github.com/Becksteinlab/GromacsWrapper/discussions
https://pypi.org/project/GromacsWrapper/
https://anaconda.org/conda-forge/GromacsWrapper
https://docs.conda.io
https://conda-forge.org/
https://anaconda.org/conda-forge/gromacs/
https://anaconda.org/bioconda/gromacs/
http://www.gromacs.org/

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

4.1.3 Manual Download

If your prefer to download manually, get the latest stable release from https://github.com/Becksteinlab/
GromacsWrapper/releases and either

pip install GromacsWrapper-0.8.5.tar.gz

or install from the unpacked source:

tar -zxvf GromacsWrapper-0.8.5.tar.gz
cd GromacsWrapper-0.8.5
pip install .

4.1.4 Source code access

The tar archive from https://github.com/Becksteinlab/GromacsWrapper/releases contains a full source code distribu-
tion.

In order to follow code development you can also browse the code git repository at https://github.com/Becksteinlab/
GromacsWrapper and checkout the main branch:

git clone https://github.com/Becksteinlab/GromacsWrapper.git
cd GromacsWrapper

Code contributions are welcome. We use black for uniform code formatting so please install black and run it on your
code.

4.1.5 Requirements

Python >= 3.8 and GROMACS (4.6.x, 2016, 2018, 2019, 2020, 2021, 2022, 2023) must be installed.

System requirements

Tested with Python 3.8–3.12 on Linux and Mac OS X. Earlier Python versions were only supported until release 0.8.5.

Required Python modules

The basic package makes use of numpy and numkit (which uses scipy); all dependencies are installed during a normal
installation process.

4.2 Quick Start

Given a PDB file 1iee.pdb, set up and run a simple simulation (assuming you have all other input files at hand such
as the MDP files).

Start with importing the package. If you can find Gromacs in your shell then GromacsWrapper can find it, too. Check
the release of the loaded Gromacs package:

10 Chapter 4. Contact

https://github.com/Becksteinlab/GromacsWrapper/releases
https://github.com/Becksteinlab/GromacsWrapper/releases
https://github.com/Becksteinlab/GromacsWrapper/releases
https://github.com/Becksteinlab/GromacsWrapper
https://github.com/Becksteinlab/GromacsWrapper
https://github.com/psf/black
https://github.com/psf/black
http://www.python.org
http://www.gromacs.org/
http://numpy.scipy.org
https://github.com/Becksteinlab/numkit
https://www.scipy.org/scipylib/index.html

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

>>> import gromacs
>>> print(gromacs.release())
2018.2

You can get help through the usual Python mechanisms:

>>> help(gromacs.pdb2gmx)
DESCRIPTION

gmx pdb2gmx reads a .pdb (or .gro) file, reads some database files,
adds hydrogens to the molecules and generates coordinates in GROMACS
...
...
OPTIONS

Options to specify input files:

-f [<.gro/.g96/...>] (eiwit.pdb)
Structure file: gro g96 pdb brk ent esp tpr

...

...

Now set up the system: (1) generate topology, (2) put in a dodecahedral simulation box, (3) solvate with water (for
simplicity, we leave out the “add ions step”):

>>> gromacs.pdb2gmx(f="1iee.pdb", o="protein.gro", p="topol.top",
... ff="oplsaa", water="tip4p")
>>> gromacs.editconf(f="protein.gro", o="boxed.gro",
... bt="dodecahedron", d=1.5, princ=True,
... input="Protein")
>>> gromacs.solvate(cp="boxed.gro", cs="tip4p", p="topol.top",
... o="solvated.gro")

Given an MDP input file for energy minimization, generate the TPR file and run the energy minimization locally:

>>> gromacs.grompp(f="emin.mdp", c="solvated.gro", p="topol.top",
... o="emin.tpr")
>>> gromacs.mdrun(v=True, deffnm="emin")

Assuming it all went well, set up and run a MD simulation, starting from the energy minimized system:

>>> gromacs.grompp(f="md.mdp", c="emin.gro", p="topol.top", o="md.tpr")
>>> gromacs.mdrun(v=True, deffnm="md")

See also:

The documentation of the gromacs package itself contains more examples and explains the common arguments of all
commands.

4.2. Quick Start 11

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

4.3 GromacsWrapper Overview

GromacsWrapper (package gromacs) is a thin shell around the Gromacs tools for light-weight integration into python
scripts or interactive use in ipython.

4.3.1 Modules

gromacs
The top level module contains all gromacs tools; each tool can be run directly or queried for its documentation.
It also defines the root logger class (name gromacs by default).

gromacs.config
Configuration options. Not really used much at the moment.

gromacs.cbook
The Gromacs cook book contains typical applications of the tools. In many cases this not more than just an
often-used combination of parameters for a tool.

gromacs.tools
Contains classes that wrap the gromacs tools. They are automatically generated from the list of tools in gromacs.
tools.gmx_tools.

gromacs.fileformats
Classes to represent data files in various formats such as xmgrace graphs. The classes allow reading and writing
and for graphs, also plotting of the data.

gromacs.utilities
Convenience functions and mixin-classes that are used as helpers in other modules.

gromacs.setup
Functions to set up a MD simulation, containing tasks such as solvation and adding ions, energy minimizqtion,
MD with position-restraints, and equilibrium MD.

gromacs.qsub
Functions to handle batch submission queuing systems.

gromacs.run
Classes to run mdrun in various way, including on multiprocessor systems.

4.3.2 Examples

The following examples should simply convey the flavour of using the package. See the individual modules for more
examples.

Getting help

In python:

gromacs.g_dist.help()
gromacs.g_dist.help(long=True)

In ipython:

gromacs.g_dist ?

12 Chapter 4. Contact

http://www.gromacs.org
http://ipython.scipy.org

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Simple usage

Gromacs flags are given as python keyword arguments:

gromacs.g_dist(v=True, s='topol.tpr', f='md.xtc', o='dist.xvg', dist=1.2)

Input to stdin of the command can be supplied:

gromacs.make_ndx(f='topol.tpr', o='md.ndx',
input=('keep "SOL"', '"SOL" | r NA | r CL', 'name 2 solvent', 'q'))

Output of the command can be caught in a variable and analyzed:

rc, output, junk = gromacs.grompp(..., stdout=False) # collects command output
for line in output.split('\n'):

line = line.strip()
if line.startswith('System has non-zero total charge:'):

qtot = float(line[34:])
break

(See gromacs.cbook.grompp_qtot() for a more robust implementation of this application.)

4.3.3 Warnings and Exceptions

A number of package-specific exceptions (GromacsError) and warnings (GromacsFailureWarning,
GromacsImportWarning, GromacsValueWarning, AutoCorrectionWarning, BadParameterWarning) can
be raised.

If you want to stop execution at, for instance, a AutoCorrectionWarning or BadParameterWarning then use the
python warnings filter:

import warnings
warnings.simplefilter('error', gromacs.AutoCorrectionWarning)
warnings.simplefilter('error', gromacs.BadParameterWarning)

This will make python raise an exception instead of moving on. The default is to always report, eg:

warnings.simplefilter('always', gromacs.BadParameterWarning)

The following exceptions are defined:

exception gromacs.GromacsError

Error raised when a gromacs tool fails.

Returns error code in the errno attribute and a string in strerror. # TODO: return status code and possibly error
message

exception gromacs.MissingDataError

Error raised when prerequisite data are not available.

For analysis with gromacs.analysis.core.Simulation this typically means that the analyze() method
has to be run first.

exception gromacs.ParseError

Error raised when parsing of a file failed.

The following warnings are defined:

4.3. GromacsWrapper Overview 13

https://docs.python.org/3/library/warnings.html#module-warnings

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

exception gromacs.GromacsFailureWarning

Warning about failure of a Gromacs tool.

exception gromacs.GromacsImportWarning

Warns about problems with using a gromacs tool.

exception gromacs.GromacsValueWarning

Warns about problems with the value of an option or variable.

exception gromacs.AutoCorrectionWarning

Warns about cases when the code is choosing new values automatically.

exception gromacs.BadParameterWarning

Warns if some parameters or variables are unlikely to be appropriate or correct.

exception gromacs.MissingDataWarning

Warns when prerequisite data/files are not available.

exception gromacs.UsageWarning

Warns if usage is unexpected/documentation ambiguous.

exception gromacs.LowAccuracyWarning

Warns that results may possibly have low accuracy.

4.3.4 Logging

The library uses python’s logging module to keep a history of what it has been doing. In particular, every wrapped
Gromacs command logs its command line (including piped input) to the log file (configured in gromacs.config.
logfilename). This facilitates debugging or simple re-use of command lines for very quick and dirty work. The
logging facilty appends to the log file and time-stamps every entry. See gromacs.config for more details on config-
uration.

It is also possible to capture output from Gromacs commands in a file instead of displaying it on screen, as described
under Input and Output.

Normally, one starts logging with the start_logging() function but in order to obtain logging messages (typically at
level debug) right from the start one may set the environment variable GW_START_LOGGING to any value that evaluates
to True (e.g., “True” or “1”).

4.3.5 Version

The package version is recorded in the gromacs.__version__ variable.

gromacs.__version__ = '0.8.5+23.g463820c.dirty'

Version of the package, following semantic versioning in the form MAJOR.MINOR.PATCH. When PATCH
increases, bugs are fixed or documentation or metadata are updated. Increases in MINOR can introduce new
features and deprecate old code. API-breaking and backwards incompatible changes can only occur when MA-
JOR is increased, except during initial development while MAJOR == 0, in which also increases in MINOR may
(rarely) introduce breaking changes.

Additional information after PATCH indicates that you are working with an unreleased version, with the number
of git commits after the release and the commit ID encoded in the trailing string.

14 Chapter 4. Contact

http://docs.python.org/library/logging.html
https://semver.org/

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

4.4 Configuration

This section documents how to configure the GromacsWrapper package. There are options to configure where log
files and templates directories are located and options to tell exactly which commands to load into this package. Any
configuration is optional and all options have sane defaults. Further documentation can be found at gromacs.config.

4.4.1 Default configuration

Note: Do not configure anything. This is the best approach.

If you are used to loading your Gromacs environment by sourcing the GMXRC file yourself or via module then do not
configure anything and let GromacsWrapper find your Gromacs installation. Only read on if there are specific things
that you want to configure or if you always want to use exactly the same version of Gromacs with GromacsWrapper.

4.4.2 Basic options

Place an INI file named ~/.gromacswrapper.cfg in your home directory, it may look like the following document.
The GMXRC parameter is the path your GMXRC start-up script:

[Gromacs]
GMXRC = /usr/local/gromacs/bin/GMXRC

The Gromacs software suite needs some environment variables that are set up sourcing the GMXRC file. You may source
it yourself (then do not include it in the config file) or set the option like the above one. If this option isn’t provided,
GromacsWrapper will guess that Gromacs was globally installed as if it was installed somewhere on your PATH or if
you externally set the Gromacs environment.

As there isn’t yet any way to know which Gromacs version to use, GromacsWrapper will first try to use “modern”
Gromacs (i.e., version 5, 2016, 2018, 2019, 2020, 2021, . . .) if available, then to use Gromacs 4.x. If you have modern
versions (collectively referred to as “version 5”) and want to use version 4 or just want to document it, you may specify
which version will be used with the release parameter:

[Gromacs]
GMXRC = /usr/local/gromacs/bin/GMXRC
release = 4.6.7

For now GromacsWrapper will guess which tools are available to put it into gromacs.tools, but you can always
configure it manually with the tools parameter. Gromacs 5/2016/. . . /2021 has a driver command (typically called gmx)
but depending on how you compile Gromacs, you can have different drivers installed. For example, you might have 4
“gmx” commands

[Gromacs]
tools = gmx gmx_d gmx_mpi gmx_mpi_d

for single and double precision work and compiled with MPI support.

For Gromacs 4, tools are separate executables and you can specify them explicitly:

[Gromacs]
GMXRC = /usr/local/gromacs/bin/GMXRC
release = 4

(continues on next page)

4.4. Configuration 15

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

(continued from previous page)

tools =
g_cluster g_dyndom g_mdmat g_principal g_select g_

→˓wham mdrun
do_dssp g_clustsize g_enemat g_membed g_protonate g_sgangle g_

→˓wheel mdrun_d
editconf g_confrms g_energy g_mindist g_rama g_sham g_

→˓x2top mk_angndx
eneconv g_covar g_filter g_morph g_rdf g_sigeps ␣

→˓genbox pdb2gmx
g_anadock g_current g_gyrate g_msd g_sorient ␣

→˓genconf
g_anaeig g_density g_h2order g_nmeig g_rms g_spatial ␣

→˓genion tpbconv
g_analyze g_densmap g_hbond g_nmens g_rmsdist g_spol ␣

→˓genrestr trjcat
g_angle g_dielectric g_helix g_nmtraj g_rmsf g_tcaf ␣

→˓gmxcheck trjconv
g_bar g_dih g_helixorient g_order g_rotacf g_traj ␣

→˓gmxdump trjorder
g_bond g_dipoles g_kinetics g_pme_error g_rotmat g_tune_pme ␣

→˓grompp
g_bundle g_disre g_lie g_polystat g_saltbr g_vanhove make_

→˓edi xpm2ps
g_chi g_dist g_luck g_potential g_sas g_velacc make_

→˓ndx

Commands will be available directly from the gromacs module:

import gromacs
gromacs.mdrun_d # either v5 `gmx_d mdrun` or v4 `mdrun_d`
gromacs.mdrun # either v5 `gmx mdrun` or v4 `mdrun`

Gromacs 4 tools will also be aliased to Gromacs 5 names (i.e., Gromacs 5/2016/2018/2019/2020/2021 names) so that
it is, at least in principle, possible to run GromacsWrapper scripts under any version of Gromacs (between 4.x and at
least 2021.x, except for incompatible changes in input files and command behavior).

Changed in version 0.6.0: The format of the tools variable in the [Gromacs] section of the config file was changed
for Gromacs 5 commands.

4.4.3 More options

Other parameters can be set to customize where templates for job submission systems and mdp files are located:

[DEFAULT]
Directory to store user templates and rc files.
configdir = ~/.gromacswrapper

Directory to store user supplied queuing system scripts.
qscriptdir = %(configdir)s/qscripts

Directory to store user supplied template files such as mdp files.
templatesdir = %(configdir)s/templates

16 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

And there are options for how to handle logging:

[Logging]
name of the logfile that is written to the current directory
logfilename = gromacs.log

loglevels (see Python's logging module for details)
ERROR only fatal errors
WARN only warnings
INFO interesting messages
DEBUG everything

console messages written to screen
loglevel_console = INFO

file messages written to logfilename
loglevel_file = DEBUG

4.4.4 Creating default configuration files and directories

If needed you may set up basic configuration files and directories using gromacs.config.setup():

import gromacs
gromacs.config.setup()

4.5 API documentation

The gromacs package makes Gromacs tools available via thin Python wrappers, which are generated in gromacs.
tools and made available in the top-level name space gromacs. The functionality to generate the tool wrappers
resides in the core modules.

Building blocks to solve commonly encountered tasks related to set-up and running of simulations are collected as
building blocks.

4.5.1 Gromacs core modules

This section documents the modules, classes, and functions on which the other parts of the package rely. The informa-
tion is probably mostly relevant to anyone who wants to extend the package.

gromacs.core – Core functionality

Here the basic command class GromacsCommand is defined. All Gromacs command classes in gromacs.tools are
automatically generated from it. The documentation of GromacsCommand applies to all wrapped Gromacs commands
and should be read by anyone using this package.

4.5. API documentation 17

http://www.gromacs.org

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Input and Output

Each command wrapped by either GromacsCommand or Command takes three additional keyword arguments: stdout,
stderr, and input. stdout and stderr determine how the command returns its own output.

The input keyword is a string that is fed to the standard input of the command (actually, subprocess.Popen.stdin).
Or, if it is not string-like then we assume it’s actually a file-like object that we can read from, e.g. a subprocess.
Popen.stdout or a File.

By setting the stdout and stderr keywords appropriately, one can have the output simply printed to the screen (use True;
this is the default, although see below for the use of the capture_output gromacs.environment flag), capture in
a python variable as a string for further processing (use False), write to a file (use a File instance) or as input for
another command (e.g. use the subprocess.Popen.stdin).

When writing setup- and analysis pipelines it can be rather cumbersome to have the gromacs output on the screen.
For these cases GromacsWrapper allows you to change its behaviour globally. By setting the value of the gromacs.
environment Flag capture_output to True (in the GromacsWrapper gromacs.environment.flags registry)

import gromacs.environment
gromacs.environment.flags['capture_output'] = True

all commands will capture their output (like stderr = False and stdout = False). Explicitly setting these keywords
overrides the global default. The default value for flags['capture_output'] is False, i.e. output is directed
through STDOUT and STDERR.

Warning: One downside of flags['capture_output'] = True is that it becomes much harder to debug
scripts unless the script is written in such a way to show the output when the command fails. Therefore, it is
advisable to only capture output on well-tested scripts.

A third value of capture_output is the value "file":

gromacs.environment.flags['capture_output'] = "file"

This writes the captured output to a file. The file name is specified in flags['capture_output_filename' and
defaults to “gromacs_captured_output.txt”. This file is over-written for each command. In this way one can investigate
the output from the last command (presumably because it failed). STDOUT and STDERR are captured into this file by
default. STDERR is printed first and then STDOUT, which does not necessarily reflect the order of output one would
see on the screen. If your code captures STDOUT for further processing then an uncaptured STDERR is written to the
capture file.

Note: There are some commands for which capturing output (flags['capture_output'] = True) might be prob-
lematic. If the command produces a large or inifinite amount of data then a memory error will occur because Python
nevertheless stores the output internally first. Thus one should avoid capturing progress output from e.g. Mdrun unless
the output has been throttled appropriately.

18 Chapter 4. Contact

https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdin
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdout
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdout
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.stdin

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Classes

class gromacs.core.GromacsCommand(*args, **kwargs)
Base class for wrapping a Gromacs tool.

Limitations: User must have sourced GMXRC so that the python script can inherit the environment and find the
gromacs programs.

The class doc string is dynamically replaced by the documentation of the gromacs command the first time the
doc string is requested. If the tool is not available at the time (i.e., cannot be found on PATH) then the generic
doc string is shown and an OSError exception is only raised when the user is actually trying to the execute the
command.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have ap-
peared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand('v', f=['md1.xtc','md2.xtc'], o='processed.xtc', t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments ('v') or as keyword
argument (v=True); note the quotes in the first case. Negating a boolean switch can be done with
'nov', nov=True or v=False (and even nov=False works as expected: it is the same as v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files must be
supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to the
illegal keyword or so it must be underscore-quoted:

cmd(...., _or='mindistres.xvg')

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

4.5. API documentation 19

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#SyntaxError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine how
the command class behaves. They are only useful when instantiating a class, i.e. they determine how
this tool behaves during all future invocations although it can be changed by setting failuremode.
This is mostly of interest to developers.

Keywords

failure
determines how a failure of the gromacs command is treated; it can be one of the following:

‘raise’
raises GromacsError if command fails

‘warn’
issue a GromacsFailureWarning

None
just continue silently

doc
[string] additional documentation (ignored) []

Changed in version 0.6.0: The doc keyword is now ignored (because it was not worth the effort to make it work
with the lazy-loading of docs).

Popen(*args, **kwargs)
Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to communicate() will not need to supply input. This is
necessary if one wants to chain the output from one command to an input from another.

TODO
Write example.

command_name = None

Derive a class from command; typically one only has to set command_name to the name of the script or
executable. The full path is required if it cannot be found by searching PATH.

commandline(*args, **kwargs)
Returns the commandline that run() uses (without pipes).

property failuremode

mode determines how the GromacsCommand behaves during failure

It can be one of the following:

‘raise’
raises GromacsError if command fails

‘warn’
issue a GromacsFailureWarning

None
just continue silently

failuremodes = ('raise', 'warn', None)

Available failure modes.

help(long=False)
Print help; same as using ? in ipython. long=True also gives call signature.

20 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

run(*args, **kwargs)
Run the command; args/kwargs are added or replace the ones given to the constructor.

transform_args(*args, **kwargs)
Combine arguments and turn them into gromacs tool arguments.

class gromacs.core.Command(*args, **kwargs)
Wrap simple script or command.

Set up the command class.

The arguments can always be provided as standard positional arguments such as

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v", "input.dat"

In addition one can also use keyword arguments such as

c="config.conf", o="output.dat", repeats=3, v=True

These are automatically transformed appropriately according to simple rules:

• Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

• Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

Example

Create a Ls class whose instances execute the ls command:

LS = type("LS", (gromacs.core.Command,), {'command_name': 'ls'})
ls = LS()
ls() # lists directory like ls
ls(l=True) # lists directory like ls -l

Now create an instance that performs a long directory listing by default:

lslong = LS(l=True)
lslong() # like ls -l

Popen(*args, **kwargs)
Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to communicate() will not need to supply input. This is
necessary if one wants to chain the output from one command to an input from another.

TODO
Write example.

__call__(*args, **kwargs)
Run command with the given arguments:

rc,stdout,stderr = command(*args, input=None, **kwargs)

All positional parameters args and all gromacs kwargs are passed on to the Gromacs command. input and
output keywords allow communication with the process via the python subprocess module.

Arguments

4.5. API documentation 21

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

input
[string, sequence] to be fed to the process’ standard input; elements of a sequence are
concatenated with newlines, including a trailing one [None]

stdin
None or automatically set to PIPE if input given [None]

stdout
how to handle the program’s stdout stream [None]

filehandle
anything that behaves like a file object

None or True
to see output on screen

False or PIPE
returns the output as a string in the stdout parameter

stderr
how to handle the stderr stream [None]

STDOUT
merges standard error with the standard out stream

False or PIPE
returns the output as a string in the stderr return parameter

None or True
keeps it on stderr (and presumably on screen)

Depending on the value of the GromacsWrapper flag gromacs.environment.
flags```['capture_output']` the above default behaviour can be different.

All other kwargs are passed on to the Gromacs tool.

Returns
The shell return code rc of the command is always returned. Depending on the value of output,
various strings are filled with output from the command.

Notes
In order to chain different commands via pipes one must use the special PopenWithInput
object (see GromacsCommand.Popen()method) instead of the simple call described here and
first construct the pipeline explicitly and then call the PopenWithInput.communicate()
method.

STDOUT and PIPE are objects provided by the subprocess module. Any python stream can
be provided and manipulated. This allows for chaining of commands. Use

from subprocess import PIPE, STDOUT

when requiring these special streams (and the special boolean switches True/False cannot
do what you need.)

(TODO: example for chaining commands)

command_name = None

Derive a class from command; typically one only has to set command_name to the name of the script or
executable. The full path is required if it cannot be found by searching PATH.

help(long=False)
Print help; same as using ? in ipython. long=True also gives call signature.

22 Chapter 4. Contact

https://docs.python.org/3/library/subprocess.html#module-subprocess

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

run(*args, **kwargs)
Run the command; args/kwargs are added or replace the ones given to the constructor.

transform_args(*args, **kwargs)
Transform arguments and return them as a list suitable for Popen.

class gromacs.core.PopenWithInput(*args, **kwargs)
Popen class that knows its input.

1. Set up the instance, including all the input it shoould receive.

2. Call PopenWithInput.communicate() later.

Note: Some versions of python have a bug in the subprocess module (issue 5179) which does not clean up
open file descriptors. Eventually code (such as this one) fails with the error:

OSError: [Errno 24] Too many open files

A weak workaround is to increase the available number of open file descriptors with ulimit -n 2048 and run
analysis in different scripts.

Initialize with the standard subprocess.Popen arguments.

Keywords

input
string that is piped into the command

communicate(use_input=True)
Run the command, using the input that was set up on __init__ (for use_input = True)

gromacs.config – Configuration for GromacsWrapper

The config module provides configurable options for the whole package; It serves to define how to handle log files, set
where template files are located and which gromacs tools are exposed in the gromacs package.

In order to set up a basic configuration file and the directories a user can execute gromacs.config.setup().

If the configuration file is edited then one can force a rereading of the new config file with gromacs.config.
get_configuration():

gromacs.config.get_configuration()

However, this will not update the available command classes (e.g. when new executables were added to a tool group). In
this case one either has to reload() a number of modules (gromacs, gromacs.config, gromacs.tools) although
it is by far easier simply to quit python and freshly import gromacs.

Almost all aspects of GromacsWrapper (paths, names, what is loaded) can be changed from within the configuration
file. The only exception is the name of the configuration file itself: This is hard-coded as ~/.gromacswrapper.cfg
although it is possible to read other configuration files with the filename argument to get_configuration().

4.5. API documentation 23

http://bugs.python.org/issue5179
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Configuration management

Important configuration variables are

gromacs.config.configdir = '/home/docs/.gromacswrapper'

Directory to store user templates and rc files. The default value is ~/.gromacswrapper.

gromacs.config.path = ['.', '/home/docs/.gromacswrapper/qscripts',
'/home/docs/.gromacswrapper/templates']

Search path for user queuing scripts and templates. The internal package-supplied templates are always searched
last via gromacs.config.get_templates(). Modify gromacs.config.path directly in order to customize
the template and qscript searching. By default it has the value ['.', qscriptdir, templatesdir]. (Note
that it is not a good idea to have template files and qscripts with the same name as they are both searched on the
same path.) path is updated whenever cfg is re-read with get_configuration().

When GromacsWrapper starts up it runs check_setup(). This notifies the user if any config files or directories are
missing and suggests to run setup(). The check if the default set up exists can be suppressed by setting the environment
variable GROMACSWRAPPER_SUPPRESS_SETUP_CHECK to ‘true’ (‘yes’ and ‘1’ also work).

Users

Users will likely only need to run gromacs.config.setup() once and perhaps occasionally execute gromacs.
config.get_configuration(). Mainly the user is expected to configure GromacsWrapper by editing the con-
figuration file ~/.gromacswrapper.cfg (which has ini-file syntax as described in ConfigParser).

gromacs.config.setup(filename='/home/docs/.gromacswrapper.cfg')
Prepare a default GromacsWrapper global environment.

1) Create the global config file.

2) Create the directories in which the user can store template and config files.

This function can be run repeatedly without harm.

gromacs.config.get_configuration(filename='/home/docs/.gromacswrapper.cfg')
Reads and parses the configuration file.

Default values are loaded and then replaced with the values from ~/.gromacswrapper.cfg if that file exists.
The global configuration instance gromacswrapper.config.cfg is updated as are a number of global variables
such as configdir, qscriptdir, templatesdir, logfilename, . . .

Normally, the configuration is only loaded when the gromacs package is imported but a re-reading of the con-
figuration can be forced anytime by calling get_configuration().

Returns
a dict with all updated global configuration variables

gromacs.config.check_setup()

Check if templates directories are setup and issue a warning and help.

Set the environment variable GROMACSWRAPPER_SUPPRESS_SETUP_CHECK skip the check and make it always
return True

:return True if directories were found and False otherwise

Changed in version 0.3.1: Uses GROMACSWRAPPER_SUPPRESS_SETUP_CHECK to suppress check (use-
ful for scripts run on a server)

24 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Developers

Developers are able to access all configuration data through gromacs.config.cfg, which represents the merger of
the package default values and the user configuration file values.

gromacs.config.cfg = <gromacs.config.GMXConfigParser object>

cfg is the instance of GMXConfigParser that makes all global configuration data accessible

class gromacs.config.GMXConfigParser(*args, **kwargs)
Customized ConfigParser.SafeConfigParser.

Reads and parses the configuration file.

Default values are loaded and then replaced with the values from ~/.gromacswrapper.cfg if that file exists.
The global configuration instance gromacswrapper.config.cfg is updated as are a number of global variables
such as configdir, qscriptdir, templatesdir, logfilename, . . .

Normally, the configuration is only loaded when the gromacswrapper package is imported but a re-reading of
the configuration can be forced anytime by calling get_configuration().

property configuration

Dict of variables that we make available as globals in the module.

Can be used as

globals().update(GMXConfigParser.configuration) # update configdir,␣
→˓templatesdir ...

getLogLevel(section, option)
Return the textual representation of logging level ‘option’ or the number.

Note that option is always interpreted as an UPPERCASE string and hence integer log levels will not be
recognized.

getpath(section, option)
Return option as an expanded path.

A subset of important data is also made available as top-level package variables as described under Location of template
files (for historical reasons); the same variable are also available in the dict gromacs.config.configuration.

gromacs.config.configuration = {'configdir': '/home/docs/.gromacswrapper',
'configfilename': '/home/docs/.gromacswrapper.cfg', 'logfilename': 'gromacs.log',
'loglevel_console': 20, 'loglevel_file': 10, 'path': ['.',
'/home/docs/.gromacswrapper/qscripts', '/home/docs/.gromacswrapper/templates'],
'qscriptdir': '/home/docs/.gromacswrapper/qscripts', 'templatesdir':
'/home/docs/.gromacswrapper/templates'}

Dict containing important configuration variables, populated by get_configuration() (mainly a shortcut; use
cfg in most cases).

Default values are hard-coded in

gromacs.config.CONFIGNAME = '/home/docs/.gromacswrapper.cfg'

Default name of the global configuration file.

gromacs.config.defaults = {'configdir': '/home/docs/.gromacswrapper', 'logfilename':
'gromacs.log', 'loglevel_console': 'INFO', 'loglevel_file': 'DEBUG', 'qscriptdir':
'/home/docs/.gromacswrapper/qscripts', 'templatesdir':
'/home/docs/.gromacswrapper/templates'}

Initial defaults for directories, filenames, and logger options.

4.5. API documentation 25

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Accessing configuration and template files

The following functions can be used to access configuration data. Note that files are searched first with their full
filename, then in all directories listed in gromacs.config.path , and finally within the package itself.

gromacs.config.get_template(t)
Find template file t and return its real path.

t can be a single string or a list of strings. A string should be one of

1. a relative or absolute path,

2. a file in one of the directories listed in gromacs.config.path ,

3. a filename in the package template directory (defined in the template dictionary gromacs.config.
templates) or

4. a key into templates.

The first match (in this order) is returned. If the argument is a single string then a single string is returned,
otherwise a list of strings.

Arguments
t : template file or key (string or list of strings)

Returns
os.path.realpath(t) (or a list thereof)

Raises
ValueError if no file can be located.

gromacs.config.get_templates(t)
Find template file(s) t and return their real paths.

t can be a single string or a list of strings. A string should be one of

1. a relative or absolute path,

2. a file in one of the directories listed in gromacs.config.path ,

3. a filename in the package template directory (defined in the template dictionary gromacs.config.
templates) or

4. a key into templates.

The first match (in this order) is returned for each input argument.

Arguments
t : template file or key (string or list of strings)

Returns
list of os.path.realpath(t)

Raises
ValueError if no file can be located.

26 Chapter 4. Contact

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Logging

Gromacs commands log their invocation to a log file; typically at loglevel INFO (see the python logging module for
details).

gromacs.config.logfilename = 'gromacs.log'

File name for the log file; all gromacs command and many utility functions (e.g. in gromacs.cbook and
gromacs.setup) append messages there. Warnings and errors are also recorded here. The default is gro-
macs.log.

gromacs.config.loglevel_console = 20

The default loglevel that is still printed to the console.

gromacs.config.loglevel_file = 10

The default loglevel that is still written to the logfilename.

Gromacs tools and scripts

Fundamentally, GromacsWrapper makes existing Gromacs tools (executables) available as functions. In order for this
to work, these executables must be found in the environment of the Python process that runs GromacsWrapper, and the
user must list all the tools that are to be made available.

Setting up the environment

The standard way to set up the Gromacs environment is to source GMXRC in the shell before running the Python process.
GMXRC adjusts a number of environment variables (such as PATH and LD_LIBRARY_PATH) but also sets Gromacs-
specific environment variables such as GMXBIN, GMXDATA, and many others:

source /usr/local/bin/GMXRC

(where the path to GMXRC is often set differently to disntinguish different installed versions of Gromacs).

Alternatively, GromacsWrapper can itself source a GMXRC file and set the environment with the
set_gmxrc_environment() function. The path to a GMXRC file can be set in the config file in the [Gromacs] section
as

[Gromacs]

GMXRC = /usr/local/bin/GMXRC

When GromacsWrapper starts up, it tries to set the environment using the GMXRC defined in the config file. If this is
left empty or is not in the file, nothing is being done.

gromacs.config.set_gmxrc_environment(gmxrc)
Set the environment from GMXRC provided in gmxrc.

Runs GMXRC in a subprocess and puts environment variables loaded by it into this Python environment.

If gmxrc evaluates to False then nothing is done. If errors occur then only a warning will be logged. Thus, it
should be safe to just call this function.

4.5. API documentation 27

http://docs.python.org/library/logging.html

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

List of tools

The list of Gromacs tools can be specified in the config file in the [Gromacs] section with the tools variable.

The tool groups are a list of names that determines which tools are made available as classes in gromacs.tools. If
not provided GromacsWrapper will first try to load Gromacs 5.x then Gromacs 4.x tools.

If you choose to provide a list, the Gromacs tools section of the config file can be like this:

[Gromacs]
Release of the Gromacs package to which information in this sections applies.
release = 4.5.3

tools contains the file names of all Gromacs tools for which classes are
generated. Editing this list has only an effect when the package is
reloaded.
(Note that this example has a much shorter list than the actual default.)
tools =

editconf make_ndx grompp genion genbox
grompp pdb2gmx mdrun mdrun_d

which tool groups to make available
groups = tools extra

For Gromacs 5.x and later (e.g., 2021) use a section like the following, where driver commands are supplied:

[Gromacs]
Release of the Gromacs package to which information in this sections applies.
release = 5.0.5

GMXRC contains the path for GMXRC file which will be loaded. If not
provided is expected that it was sourced as usual before importing this
library.
GMXRC = /usr/local/gromacs/bin/GMXRC

tools contains the command names of all Gromacs tools for which classes are generated.
Editing this list has only an effect when the package is reloaded.
(Note that this example has a much shorter list than the actual default.)
tools = gmx gmx_d

For example, on the commandline you would run

gmx grompp -f md.mdp -c system.gro -p topol.top -o md.tpr

and within GromacsWrapper this would become

gromacs.grompp(f="md.mdp", c="system.gro", p="topol.top", o="md.tpr")

Note: Because of changes in the Gromacs tool in 5.x, GromacsWrapper scripts might break, even if the tool names
are still the same.

28 Chapter 4. Contact

http://www.gromacs.org/Documentation/How-tos/Tool_Changes_for_5.0

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Location of template files

Template variables list files in the package that can be used as templates such as run input files. Because the package
can be a zipped egg we actually have to unwrap these files at this stage but this is completely transparent to the user.

gromacs.config.qscriptdir = '/home/docs/.gromacswrapper/qscripts'

Directory to store user supplied queuing system scripts. The default value is ~/.gromacswrapper/qscripts.

gromacs.config.templatesdir = '/home/docs/.gromacswrapper/templates'

Directory to store user supplied template files such as mdp files. The default value is ~/.gromacswrapper/
templates.

gromacs.config.templates = {'darwin.sh': '/home/docs/checkouts/readthedocs.org/
user_builds/gromacswrapper/checkouts/latest/gromacs/templates/darwin.sh', 'em.mdp':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/em.mdp', 'gromacswrapper.cfg':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/gromacswrapper.cfg', 'gromacswrapper_465.cfg':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/gromacswrapper_465.cfg', 'local.sh':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/local.sh', 'md_CHARMM27.mdp':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/md_CHARMM27.mdp', 'md_CHARMM27_gpu.mdp':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/md_CHARMM27_gpu.mdp', 'md_G43a1.mdp':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/md_G43a1.mdp', 'md_OPLSAA.mdp':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/md_OPLSAA.mdp', 'md_OPLSAA_gpu.mdp':
'/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/
gromacs/templates/md_OPLSAA_gpu.mdp'}

GromacsWrapper comes with a number of templates for run input files and queuing system scripts. They are
provided as a convenience and examples but WITHOUT ANY GUARANTEE FOR CORRECTNESS OR
SUITABILITY FOR ANY PURPOSE.

All template filenames are stored in gromacs.config.templates. Templates have to be extracted from the
GromacsWrapper python egg file because they are used by external code: find the actual file locations from this
variable.

Gromacs mdp templates

These are supplied as examples and there is NO GUARANTEE THAT THEY PRODUCE SEN-
SIBLE OUTPUT — check for yourself! Note that only existing parameter names can be modified
with gromacs.cbook.edit_mdp() at the moment; if in doubt add the parameter with its gromacs
default value (or empty values) and modify later with edit_mdp().

The safest bet is to use one of the mdout.mdp files produced by gromacs.grompp() as a template
as this mdp contains all parameters that are legal in the current version of Gromacs.

Queuing system templates

The queing system scripts are highly specific and you will need to add your own into gromacs.
config.qscriptdir. See gromacs.qsub for the format and how these files are processed.

gromacs.config.qscript_template = '/home/docs/checkouts/readthedocs.org/user_builds/
gromacswrapper/checkouts/latest/gromacs/templates/local.sh'

The default template for SGE/PBS run scripts.

4.5. API documentation 29

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.environment – Run time modification of behaviour

Some aspects of GromacsWrapper can be determined globally. The corresponding flags Flag are set in the envi-
ronment (think of them like environment variables). They are accessible through the pseudo-dictionary gromacs.
environment.flags.

The entries appear as ‘name’-‘value’ pairs. Flags check values and illegal ones raise a ValueError. Documentation
on all flags can be obtained with

print gromacs.environment.flags.doc()

List of GromacsWrapper flags with default values

class gromacs.environment.flagsDocs

capture_output = False

Select if Gromacs command output is always captured.

>>> flags['capture_output'] = False

By default a GromacsCommand will direct STDOUT and STDERR output from the command itself
to the screen (through /dev/stdout and /dev/stderr). When running the command, this can be changed
with the keywords stdout and stderr as described in gromacs.core and Command .

If this flag is set to True then by default STDOUT and STDERR are captured as if one had set

stdout=False, stderr=False

Explicitly setting stdout and/or stderr overrides the behaviour described above.

If set to the special keyword "file"` then the command writes to the file whose name
is given by ``flags['capture_output_filename']. This file is over-written for each com-
mand. In this way one can investigate the output from the last command (presumably because it
failed). STDOUT and STDERR are captured into this file by default. STDERR is printed first and
then STDOUT, which does not necessarily reflect the order of output one would see on the screen.

The default is False.

capture_output_filename = ‘gromacs_captured_output.txt’

Name of the file that captures output if flags['capture_output'] = "file"

>>> flags['capture_output_filename'] = 'gromacs_captured_output.txt'

This is an experimental feature. The default is ‘gromacs_captured_output.txt’.

Classes

gromacs.environment.flags

class gromacs.environment.Flags(*args)
Global registry of flags. Acts like a dict for item access.

There are a number flags defined that influence how GromacsWrapper behaves. They are accessible through the
pseudo-dictionary

gromacs.environment.flags

30 Chapter 4. Contact

https://docs.python.org/3/library/exceptions.html#ValueError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

The entries appear as ‘name’-‘value’ pairs. Flags check values and illegal ones raise a ValueError. Documen-
tation on all flags can be obtained with

print gromacs.environment.flags.__doc__

New flags are added with the Flags.register() method which takes a new Flag instance as an argument.

For developers: Initialize Flags registry with a list of Flag instances.

doc()

Shows doc strings for all flags.

items()→ a set-like object providing a view on D's items

register(flag)
Register a new Flag instance with the Flags registry.

setdefault(k, d=None)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update(*flags)
Update Flags registry with a list of Flag instances.

values()→ an object providing a view on D's values

class gromacs.environment.Flag(name, default, mapping=None, doc=None)
A Flag, essentially a variable that knows its default and legal values.

Create a new flag which will be registered with Flags.

Usage

newflag = Flag(name, default, mapping, doc)

Arguments

name
name of the flag, must be a legal python name

default
default value

mapping
dict that maps allowed input values to canonical values; if None then no argument checking
will be performed and all values are directly set.

doc
doc string; may contain string interpolation mappings for:

%%(name)s name of the flag
%%(default)r default value
%%(value)r current value
%%(mapping)r mapping

Doc strings are generated dynamically and reflect the current state.

prop()

Use this for property(**flag.prop())

4.5. API documentation 31

https://docs.python.org/3/library/exceptions.html#ValueError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.formats – Accessing various files

This module contains classes that represent data files on disk. Typically one creates an instance and

• reads from a file using a read() method, or

• populates the instance (in the simplest case with a set() method) and the uses the write() method to write the
data to disk in the appropriate format.

For function data there typically also exists a plot() method which produces a graph (using matplotlib).

The module defines some classes that are used in other modules; they do not make use of gromacs.tools or gromacs.
cbook and can be safely imported at any time.

Contents

Simple xmgrace XVG file format

Gromacs produces graphs in the xmgrace (“xvg”) format. These are simple multi-column data files. The class XVG en-
capsulates access to such files and adds a number of methods to access the data (as NumPy arrays), compute aggregates,
or quickly plot it.

The XVG class is useful beyond reading xvg files. With the array keyword or the XVG.set()method one can load data
from an array instead of a file. The array should be simple “NXY” data (typically: first column time or position, further
columns scalar observables). The data should be a NumPy numpy.ndarray array a with shape (M, N) where M-1
is the number of observables and N the number of observations, e.g.the number of time points in a time series. a[0]
is the time or position and a[1:] the M-1 data columns.

Errors

The XVG.error attribute contains the statistical error for each timeseries. It is computed from the standard deviation
of the fluctuations from the mean and their correlation time. The parameters for the calculations of the correlation time
are set with XVG.set_correlparameters().

See also:

numkit.timeseries.tcorrel()

Plotting

The XVG.plot() and XVG.errorbar() methods are set up to produce graphs of multiple columns simultaneously. It
is typically assumed that the first column in the selected (sub)array contains the abscissa (“x-axis”) of the graph and
all further columns are plotted against the first one.

32 Chapter 4. Contact

http://plasma-gate.weizmann.ac.il/Grace/
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Data selection

Plotting from XVG is fairly flexible as one can always pass the columns keyword to select which columns are to be
plotted. Assuming that the data contains [t, X1, X2, X3], then one can

1) plot all observable columns (X1 to X3) against t:

xvg.plot()

2) plot only X2 against t:

xvg.plot(columns=[0,2])

3) plot X2 and X3 against t:

xvg.plot(columns=[0,2,3])

4) plot X1 against X3:

xvg.plot(columns=[2,3])

Coarse grainining of data

It is also possible to coarse grain the data for plotting (which typically results in visually smoothing the graph because
noise is averaged out).

Currently, two alternative algorithms to produce “coarse grained” (decimated) graphs are implemented and can be
selected with the method keyword for the plotting functions in conjuction with maxpoints (the number of points to be
plotted):

1) mean histogram (default) — bin the data (using numkit.timeseries.regularized_function() and com-
pute the mean for each bin. Gives the exact number of desired points but the time data are whatever the middle
of the bin is.

2) smooth subsampled — smooth the data with a running average (other windows like Hamming are also possible)
and then pick data points at a stepsize compatible with the number of data points required. Will give exact times
but not the exact number of data points.

For simple test data, both approaches give very similar output.

For the special case of periodic data such as angles, one can use the circular mean (“circmean”) to coarse grain. In this
case, jumps across the -180º/+180º boundary are added as masked datapoints and no line is drawn across the jump in the
plot. (Only works with the simple XVG.plot() method at the moment, errorbars or range plots are not implemented
yet.)

See also:

XVG.decimate()

4.5. API documentation 33

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Examples

In this example we generate a noisy time series of a sine wave. We store the time, the value, and an error. (In a real
example, the value might be the mean over multiple observations and the error might be the estimated error of the
mean.)

>>> import numpy as np
>>> import gromacs.formats
>>> X = np.linspace(-10,10,50000)
>>> yerr = np.random.randn(len(X))*0.05
>>> data = np.vstack((X, np.sin(X) + yerr, np.random.randn(len(X))*0.05))
>>> xvg = gromacs.formats.XVG(array=data)

Plot value for all time points:

>>> xvg.plot(columns=[0,1], maxpoints=None, color="black", alpha=0.2)

Plot bin-averaged (decimated) data with the errors, over 1000 points:

>>> xvg.errorbar(maxpoints=1000, color="red")

(see output in Figure Plot of Raw vs Decimated data)

−10 −5 0 5 10
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

raw data

1000 points

Fig. 1: Plot of Raw vs Decimated data. Ex-
ample of plotting raw data (sine on 50,000
points, gray) versus the decimated graph (re-
duced to 1000 points, red line). The errors
were also decimated and reduced to the er-
rors within the 5% and the 95% percentile.
The decimation is carried out by histogram-
ming the data in the desired number of bins
and then the data in each bin is reduced by ei-
ther numpy.mean() (for the value) or scipy.
stats.scoreatpercentile() (for errors).

In principle it is possible to use other functions to decimate the data.
For XVG.plot(), the method keyword can be changed (see XVG.
decimate() for allowed method values). For XVG.errorbar(),
the method to reduce the data values (typically column 1) is fixed
to “mean” but the errors (typically columns 2 and 3) can also be re-
duced with error_method = “rms”.

If one wants to show the variation of the raw data together with the
decimated and smoothed data then one can plot the percentiles of the
deviation from the mean in each bin:

>>> xvg.errorbar(columns=[0,
→˓1,1], maxpoints=1000, color="blue", demean=True)

The demean keyword indicates if fluctuations from the mean are reg-
ularised1. The method XVG.plot_coarsened() automates this ap-
proach and can plot coarsened data selected by the columns keyword.

Classes and functions

class gromacs.fileformats.xvg.XVG(filename=None,
names=None,
array=None,
permissive=False,
**kwargs)

Class that represents the numerical data in a grace xvg file.

All data must be numerical. NAN and INF values are supported
via python’s float() builtin function.

1 When error_method = “percentile” is selected for XVG.errorbar() then demean does not actually force a regularisation of the fluctuations
from the mean. Instead, the (symmetric) percentiles are computed on the full data and the error ranges for plotting are directly set to the percentiles.
In this way one can easily plot the e.g. 10th-percentile to 90th-percentile band (using keyword percentile = 10).

34 Chapter 4. Contact

https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

The array attribute can be used to access the the array once it
has been read and parsed. The ma attribute is a numpy masked
array (good for plotting).

Conceptually, the file on disk and the XVG instance are con-
sidered the same data. Whenever the filename for I/O (XVG.
read() and XVG.write()) is changed then the filename as-
sociated with the instance is also changed to reflect the associ-
ation between file and instance.

With the permissive = True flag one can instruct the file reader
to skip unparseable lines. In this case the line numbers of the
skipped lines are stored in XVG.corrupted_lineno.

A number of attributes are defined to give quick access to sim-
ple statistics such as

• mean: mean of all data columns

• std : standard deviation

• min: minimum of data

• max: maximum of data

• error: error on the mean, taking correlation times into account (see also XVG.
set_correlparameters())

• tc: correlation time of the data (assuming a simple exponential decay of the fluctuations around the mean)

These attributes are numpy arrays that correspond to the data
columns in XVG.array, i.e. XVG.array[1:].

Note:

• Only simple XY or NXY files are currently supported, not Grace files that contain multiple data sets sepa-
rated by ‘&’.

• Any kind of formatting (i.e. xmgrace commands) is discarded.

Initialize the class from a xvg file.

Arguments

filename
is the xvg file; it can only be of type XY or NXY. If it is supplied then it is read and parsed
when XVG.array is accessed.

names
optional labels for the columns (currently only written as comments to file); string with
columns separated by commas or a list of strings

array
read data from array (see XVG.set())

permissive
False raises a ValueError and logs and errior when encountering data lines that it cannot
parse. True ignores those lines and logs a warning—this is a risk because it might read a
corrupted input file [False]

stride
Only read every stride line of data [1].

4.5. API documentation 35

https://docs.python.org/3/library/exceptions.html#ValueError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

savedata
True includes the data (XVG.array` and associated caches) when the instance is pickled
(see pickle); this is oftens not desirable because the data are already on disk (the xvg file
filename) and the resulting pickle file can become very big. False omits those data from a
pickle. [False]

metadata
dictionary of metadata, which is not touched by the class

property array

Represent xvg data as a (cached) numpy array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 . . . the array
a will be a[0] = X, a[1] = Y1,

decimate(method, a, maxpoints=10000, **kwargs)
Decimate data a to maxpoints using method.

If a is a 1D array then it is promoted to a (2, N) array where the first column simply contains the index.

If the array contains fewer than maxpoints points or if maxpoints is None then it is returned as it is. The
default for maxpoints is 10000.

Valid values for the reduction method:

• “mean”, uses XVG.decimate_mean() to coarse grain by averaging the data in bins along the time axis

• “circmean”, uses XVG.decimate_circmean() to coarse grain by calculating the circular mean of the
data in bins along the time axis. Use additional keywords low and high to set the limits. Assumes that
the data are in degrees.

• “min” and “max* select the extremum in each bin

• “rms”, uses XVG.decimate_rms() to coarse grain by computing the root mean square sum of the
data in bins along the time axis (for averaging standard deviations and errors)

• “percentile” with keyword per: XVG.decimate_percentile() reduces data in each bin to the per-
centile per

• “smooth”, uses XVG.decimate_smooth() to subsample from a smoothed function (generated with a
running average of the coarse graining step size derived from the original number of data points and
maxpoints)

Returns
numpy array (M', N') from a (M', N) array with M' == M (except when M == 1, see
above) and N' <= N (N' is maxpoints).

decimate_circmean(a, maxpoints, **kwargs)
Return data a circmean-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates the weighted circular mean in each bin as
the decimated data, using numkit.timeseries.circmean_histogrammed_function(). The coarse
grained time in the first column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

Keywords low and high can be used to set the boundaries. By default they are [-pi, +pi].

This method returns a masked array where jumps are flagged by an insertion of a masked point.

36 Chapter 4. Contact

https://docs.python.org/3/library/pickle.html#module-pickle

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Note: Assumes that the first column is time and that the data are in degrees.

Warning: Breaking of arrays only works properly with a two-column array because breaks are only
inserted in the x-column (a[0]) where y1 = a[1] has a break.

decimate_error(a, maxpoints, **kwargs)
Return data a error-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates an error estimate in each bin as the decimated
data, using numkit.timeseries.error_histogrammed_function(). The coarse grained time in the
first column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

See also:

numkit.timeseries.tcorrel()

Note: Assumes that the first column is time.

Does not work very well because often there are too few datapoints to compute a good autocorrelation
function.

decimate_max(a, maxpoints, **kwargs)
Return data a max-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates the maximum in each bin as the decimated
data, using numkit.timeseries.max_histogrammed_function(). The coarse grained time in the first
column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

Note: Assumes that the first column is time.

decimate_mean(a, maxpoints, **kwargs)
Return data a mean-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates the weighted average in each bin as the dec-
imated data, using numkit.timeseries.mean_histogrammed_function(). The coarse grained time
in the first column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

Note: Assumes that the first column is time.

decimate_min(a, maxpoints, **kwargs)
Return data a min-decimated on maxpoints.

4.5. API documentation 37

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Histograms each column into maxpoints bins and calculates the minimum in each bin as the decimated
data, using numkit.timeseries.min_histogrammed_function(). The coarse grained time in the first
column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

Note: Assumes that the first column is time.

decimate_percentile(a, maxpoints, **kwargs)
Return data a percentile-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates the percentile per in each bin as the decimated
data, using numkit.timeseries.percentile_histogrammed_function(). The coarse grained time
in the first column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

Note: Assumes that the first column is time.

Keywords

per
percentile as a percentage, e.g. 75 is the value that splits the data into the lower 75% and upper 25%;
50 is the median [50.0]

See also:

numkit.timeseries.regularized_function() with scipy.stats.scoreatpercentile()

decimate_rms(a, maxpoints, **kwargs)
Return data a rms-decimated on maxpoints.

Histograms each column into maxpoints bins and calculates the root mean square sum in each bin as the dec-
imated data, using numkit.timeseries.rms_histogrammed_function(). The coarse grained time in
the first column contains the centers of the histogram time.

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of maxpoints points is returned.

Note: Assumes that the first column is time.

decimate_smooth(a, maxpoints, window='flat')
Return smoothed data a decimated on approximately maxpoints points.

1. Produces a smoothed graph using the smoothing window window; “flat” is a running average.

2. select points at a step size approximatelt producing maxpoints

If a contains <= maxpoints then a is simply returned; otherwise a new array of the same dimensions but
with a reduced number of points (close to maxpoints) is returned.

38 Chapter 4. Contact

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Note: Assumes that the first column is time (which will never be smoothed/averaged), except when the
input array a is 1D and therefore to be assumed to be data at equidistance timepoints.

TODO: - Allow treating the 1st column as data

default_color_cycle = ['black', 'red', 'blue', 'orange', 'magenta', 'cyan',
'yellow', 'brown', 'green']

Default color cycle for XVG.plot_coarsened(): ['black', 'red', 'blue', 'orange',
'magenta', 'cyan', 'yellow', 'brown', 'green']

default_extension = 'xvg'

Default extension of XVG files.

property error

Error on the mean of the data, taking the correlation time into account.

See [FrenkelSmit2002] p526:

error = sqrt(2*tc*acf[0]/T)

where acf() is the autocorrelation function of the fluctuations around the mean, y-<y>, tc is the correlation
time, and T the total length of the simulation.

errorbar(**kwargs)
errorbar plot for a single time series with errors.

Set columns keyword to select [x, y, dy] or [x, y, dx, dy], e.g. columns=[0,1,2]. See XVG.plot() for
details. Only a single timeseries can be plotted and the user needs to select the appropriate columns with
the columns keyword.

By default, the data are decimated (see XVG.plot()) for the default of maxpoints = 10000 by averaging
data in maxpoints bins.

x,y,dx,dy data can plotted with error bars in the x- and y-dimension (use filled = False).

For x,y,dy use filled = True to fill the region between y±dy. fill_alpha determines the transparency of the
fill color. filled = False will draw lines for the error bars. Additional keywords are passed to pylab.
errorbar().

By default, the errors are decimated by plotting the 5% and 95% percentile of the data in each bin. The
percentile can be changed with the percentile keyword; e.g. percentile = 1 will plot the 1% and 99%
perentile (as will percentile = 99).

The error_method keyword can be used to compute errors as the root mean square sum (error_method =
“rms”) across each bin instead of percentiles (“percentile”). The value of the keyword demean is applied
to the decimation of error data alone.

See also:

XVG.plot() lists keywords common to both methods.

property ma

Represent data as a masked array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 . . . the array
a will be a[0] = X, a[1] = Y1,

inf and nan are filtered via numpy.isfinite().

4.5. API documentation 39

http://books.google.co.uk/books?id=XmyO2oRUg0cC&pg=PA526

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

property max

Maximum of the data columns.

maxpoints_default = 10000

Aim for plotting around that many points

property mean

Mean value of all data columns.

property min

Minimum of the data columns.

parse(stride=None)
Read and cache the file as a numpy array.

Store every stride line of data; if None then the class default is used.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 . . . the array
a will be a[0] = X, a[1] = Y1,

plot(**kwargs)
Plot xvg file data.

The first column of the data is always taken as the abscissa X. Additional columns are plotted as ordinates
Y1, Y2, . . .

In the special case that there is only a single column then this column is plotted against the index, i.e. (N,
Y).

Keywords

columns
[list] Select the columns of the data to be plotted; the list is used as a numpy.array extended
slice. The default is to use all columns. Columns are selected after a transform.

transform
[function] function transform(array) -> array which transforms the original array;
must return a 2D numpy array of shape [X, Y1, Y2, . . .] where X, Y1, . . . are column
vectors. By default the transformation is the identity [lambda x: x].

maxpoints
[int] limit the total number of data points; matplotlib has issues processing png files with
>100,000 points and pdfs take forever to display. Set to None if really all data should be
displayed. At the moment we simply decimate the data at regular intervals. [10000]

method
method to decimate the data to maxpoints, see XVG.decimate() for details

color
single color (used for all plots); sequence of colors (will be repeated as necessary); or a
matplotlib colormap (e.g. “jet”, see matplotlib.cm). The default is to use the XVG.
default_color_cycle.

ax
plot into given axes or create new one if None [None]

kwargs
All other keyword arguments are passed on to matplotlib.pyplot.plot().

Returns

40 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

ax
axes instance

plot_coarsened(**kwargs)
Plot data like XVG.plot() with the range of all data shown.

Data are reduced to maxpoints (good results are obtained with low values such as 100) and the actual range
of observed data is plotted as a translucent error band around the mean.

Each column in columns (except the abscissa, i.e. the first column) is decimated (with XVG.decimate())
and the range of data is plotted alongside the mean using XVG.errorbar() (see for arguments). Additional
arguments:

Kewords

maxpoints
number of points (bins) to coarsen over

color
single color (used for all plots); sequence of colors (will be repeated as necessary); or a
matplotlib colormap (e.g. “jet”, see matplotlib.cm). The default is to use the XVG.
default_color_cycle.

method
Method to coarsen the data. See XVG.decimate()

The demean keyword has no effect as it is required to be True.

See also:

XVG.plot(), XVG.errorbar() and XVG.decimate()

read(filename=None)
Read and parse xvg file filename.

set(a)
Set the array data from a (i.e. completely replace).

No sanity checks at the moment. . .

set_correlparameters(**kwargs)
Set and change the parameters for calculations with correlation functions.

The parameters persist until explicitly changed.

Keywords

nstep
only process every nstep data point to speed up the FFT; if left empty a default is chosen
that produces roughly 25,000 data points (or whatever is set in ncorrel)

ncorrel
If no nstep is supplied, aim at using ncorrel data points for the FFT; sets XVG.ncorrel
[25000]

force
force recalculating correlation data even if cached values are available

kwargs
see numkit.timeseries.tcorrel() for other options

property std

Standard deviation from the mean of all data columns.

4.5. API documentation 41

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

property tc

Correlation time of the data.

See XVG.error() for details.

write(filename=None)
Write array to xvg file filename in NXY format.

Note: Only plain files working at the moment, not compressed.

gromacs.fileformats.xvg.break_array(a, threshold=3.141592653589793, other=None)
Create a array which masks jumps >= threshold.

Extra points are inserted between two subsequent values whose absolute difference differs by more than threshold
(default is pi).

Other can be a secondary array which is also masked according to a.

Returns (a_masked, other_masked) (where other_masked can be None)

Gromacs XPM file format

Gromacs stores matrix data in the xpm file format. This implementation of a Python reader is based on Tsjerk Wasse-
naar’s post to gmx-users numerical matrix from xpm file (Mon Oct 4 13:05:26 CEST 2010). This version returns a
NumPy array and can guess an appropriate dtype for the array.

Classes

class gromacs.fileformats.xpm.XPM(filename=None, **kwargs)
Class to make a Gromacs XPM matrix available as a NumPy numpy.ndarray.

The data is available in the attribute XPM.array.

Note: By default, the rows (2nd dimension) in the XPM.array are re-ordered so that row 0 (i.e. array[:,0]
corresponds to the first residue/hydrogen bond/etc. The original xpm matrix is obtained for reverse = False.
The XPM reader always reorders the XPM.yvalues (obtained from the xpm file) to match the order of the rows.

Initialize xpm structure.

Arguments

filename
read from xpm file directly

autoconvert
try to guess the type of the output array from the colour legend [True]

reverse
reverse rows (2nd dimension): re-orders the rows so that the first row corresponds e.g. to the
first residue or first H-bonds and not the last) [True]

xvalues

Values of on the x-axis, extracted from the xpm file.

42 Chapter 4. Contact

http://lists.gromacs.org/pipermail/gmx-users/2010-October/054557.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

yvalues

Values of on the y-axis, extracted from the xpm file. These are in the same order as the rows in the xpm
matrix. If reverse = False then this is typically a descending list of numbers (highest to lowest residue
number, index number, etc). For reverse = True it is resorted accordingly.

COLOUR = re.compile(' ^.*" # start with quotation mark\n (?P<symbol>[-~])#
printable ASCII symbol used in the actual pixmap: \'space\' to \'~\'\n \\s+ ,
re.VERBOSE)

compiled regular expression to parse the colors in the xpm file:

static char *gromacs_xpm[] = {
"14327 9 2 1",
" c #FFFFFF " /* "None" */,
"o c #FF0000 " /* "Present" */,

Matches are named “symbol”, “color” (hex string), and “value”. “value” is typically autoconverted to
appropriate values with gromacs.fileformats.convert.Autoconverter. The symbol is matched as
a printable ASCII character in the range 0x20 (space) to 0x7E (~).

property array

XPM matrix as a numpy.ndarray.

The attribute itself cannot be assigned a different array but the contents of the array can be modified.

col(c)
Parse colour specification

default_extension = 'xpm'

Default extension for files read/written by this class.

parse()

Parse the xpm file and populate XPM.array.

read(filename=None)
Read and parse mdp file filename.

static uncomment(s)
Return string s with C-style comments /* . . . */ removed.

static unquote(s)
Return string s with quotes " removed.

Example: Analysing H-bonds

Run gromacs.g_hbond() to produce the existence map (and the log file for the atoms involved in the bonds; the ndx
file is also useful):

gromacs.g_hbond(s=TPR, f=XTC, g="hbond.log", hbm="hb.xpm", hbn="hb.ndx")

Load the XPM:

hb = XPM("hb.xpm", reverse=True)

Calculate the fraction of time that each H-bond existed:

4.5. API documentation 43

http://www.danshort.com/ASCIImap/indexhex.htm
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

hb_fraction = hb.array.mean(axis=0)

Get the descriptions of the bonds:

desc = [line.strip() for line in open("hbond.log") if not line.startswith('#')]

Note: It is important that reverse=True is set so that the rows in the xpm matrix are brought in the same order as
the H-bond labels.

Show the results:

print "\n".join(["%-40s %4.1f%%" % p for p in zip(desc, 100*hb_fraction)])

Gromacs parameter MDP file format

The .mdp file contains a list of keywords that are used to set up a simulation with Grompp. The class MDP parses this
file and provides access to the keys and values as ordered dictionary.

class gromacs.fileformats.mdp.MDP(filename=None, autoconvert=True, **kwargs)
Class that represents a Gromacs mdp run input file.

The MDP instance is an ordered dictionary.

• Parameter names are keys in the dictionary.

• Comments are sequentially numbered with keys Comment0001, Comment0002, . . .

• Empty lines are similarly preserved as Blank0001,

When writing, the dictionary is dumped in the recorded order to a file. Inserting keys at a specific position is not
possible.

Currently, comments after a parameter on the same line are discarded. Leading and trailing spaces are always
stripped.

See also:

For editing a mdp file one can also use gromacs.cbook.edit_mdp() (which works like a poor replacement for
sed).

Initialize mdp structure.

Arguments

filename
read from mdp file

autoconvert
[boolean] True converts numerical values to python numerical types; False keeps every-
thing as strings [True]

kwargs
Populate the MDP with key=value pairs. (NO SANITY CHECKS; and also does not work
for keys that are not legal python variable names such as anything that includes a minus ‘-’
sign or starts with a number).

44 Chapter 4. Contact

http://www.gromacs.org/Documentation/File_Formats/.mdp_File

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

default_extension = 'mdp'

Default extension for files read/written by this class.

read(filename=None)
Read and parse mdp file filename.

write(filename=None, skipempty=False)
Write mdp file to filename.

Keywords

filename
output mdp file; default is the filename the mdp was read from

skipempty
[boolean] True removes any parameter lines from output that contain empty values [False]

Note: Overwrites the file that the mdp was read from if no filename supplied.

Gromacs NDX index file format

The .ndx file contains lists of atom indices that are grouped in sections by group names. The classes NDX and
uniqueNDX can parse such ndx files and provide convenient access to the individual groups.

class gromacs.fileformats.ndx.NDX(filename=None, **kwargs)
Gromacs index file.

Represented as a ordered dict where the keys are index group names and values are numpy arrays of atom num-
bers.

Use the NDX.read() and NDX.write() methods for I/O. Access groups by name via the NDX.get() and NDX.
set() methods.

Alternatively, simply treat the NDX instance as a dictionary. Setting a key automatically transforms the new value
into a integer 1D numpy array (not a set, as would be the make_ndx behaviour).

Note: The index entries themselves are ordered and can contain duplicates so that output from NDX can be easily
used for g_dih and friends. If you need set-like behaviour you will have do use gromacs.formats.uniqueNDX
or gromacs.cbook.IndexBuilder (which uses make_ndx throughout).

Example

Read index file, make new group and write to disk:

ndx = NDX()
ndx.read('system.ndx')
print ndx['Protein']
ndx['my_group'] = [2, 4, 1, 5] # add new group
ndx.write('new.ndx')

Or quicker (replacing the input file system.ndx):

ndx = NDX('system') # suffix .ndx is automatically added
ndx['chi1'] = [2, 7, 8, 10]
ndx.write()

4.5. API documentation 45

http://www.gromacs.org/Documentation/File_Formats/.ndx_File

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

default_extension = 'ndx'

Default extension for files read/written by this class.

format = '%6d'

standard ndx file format: ‘%6d’

get(name)
Return index array for index group name.

property groups

Return a list of all groups.

ncol = 15

standard ndx file format: 15 columns

property ndxlist

Return a list of groups in the same format as gromacs.cbook.get_ndx_groups().

Format:
[{‘name’: group_name, ‘natoms’: number_atoms, ‘nr’: # group_number},]

read(filename=None)
Read and parse index file filename.

set(name, value)
Set or add group name as a 1D numpy array.

setdefault(**kwargs)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

size(name)
Return number of entries for group name.

property sizes

Return a dict with group names and number of entries,

write(filename=None, ncol=15, format='%6d')
Write index file to filename (or overwrite the file that the index was read from)

class gromacs.fileformats.ndx.uniqueNDX(filename=None, **kwargs)
Index that behaves like make_ndx, i.e. entries behaves as sets, not lists.

The index lists behave like sets: - adding sets with ‘+’ is equivalent to a logical OR: x + y == “x | y” - subtraction
‘-’ is AND: x - y == “x & y” - see join() for ORing multiple groups (x+y+z+. . .)

Example

I = uniqueNDX('system.ndx')
I['SOLVENT'] = I['SOL'] + I['NA+'] + I['CL-']

join(*groupnames)
Return an index group that contains atoms from all groupnames.

The method will silently ignore any groups that are not in the index.

Example

Always make a solvent group from water and ions, even if not all ions are present in all simulations:

46 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

I['SOLVENT'] = I.join('SOL', 'NA+', 'K+', 'CL-')

class gromacs.fileformats.ndx.IndexSet

set which defines ‘+’ as union (OR) and ‘-’ as intersection (AND).

Gromacs Preprocessed Topology (top) Parser

New in version 0.5.0.

Gromacs can produce preprocessed topology files that contain all topology information (generated using grompp -pp
processed.top). Reading the regular topol.top is not supported, for now, since the #include statements are not
handled. The TOP parser can read an write processed.top files. The TOP also provides an interface to modify the force-
field terms and parameters in a programmatic way. Example applications involve system preparation for Hamiltonian-
replica exchange (REST2 with lambda scaling), and automated force-field parametrization.

Gromacs TOP file format

Classes

class gromacs.fileformats.top.TOP(fname)
Class to make a TOP object from a GROMACS processed.top file

The force-field and molecules data is exposed as python object.

Note: Only processed.top files generated by GROMACS ‘grompp -pp’ are supported - the usual topol.top files
are not supported (yet!)

Initialize the TOP structure.

Arguments

fname
name of the processed.top file

write(filename)
Write the TOP object to a file

class gromacs.fileformats.top.SystemToGroTop(system, outfile='output.top', multiple_output=False)
Converter class - represent TOP objects as GROMACS topology file.

Initialize GROMACS topology writer.

Arguments

system
blocks.System object, containing the topology

outfile
name of the file to write to

multiple_output
if True, write moleculetypes to separate files, named mol_MOLNAME.itp (default: False)

assemble_topology()

Call the various member self._make_* functions to convert the topology object into a string

4.5. API documentation 47

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

History

Sources adapted from code by Reza Salari https://github.com/resal81/PyTopol

Example: Read a processed.top file and scale charges

Run grompp -pp to produce a processed.top from conf.gro, grompp.mdp and topol.top files:

$ grompp -pp

This file now containts all the force-field information:

from gromacs.fileformats import TOP
top = TOP("processed.top")

Scale the LJ epsilon by an arbitrary number, here 0.9

scaling = 0.9
for at in top.atomtypes:
at.gromacs['param']['lje'] *= scaling

Write out the scaled down topology:

top.write("output.top")

Note: You can use this to prepare a series of top files for Hamiltonian Replica Exchange (HREX) simulations. See
scripts/gw-partial_tempering.py for an example.

Gromacs TOP - BLOCKS boiler-plate code

Classes

class gromacs.fileformats.blocks.System

Top-level class containing molecule topology.

Contains all the parameter types (AtomTypes, BondTypes, . . .) and molecules.

class gromacs.fileformats.blocks.Molecule

Class that represents a Molecule

Contains all the molecule attributes: atoms, bonds, angles dihedrals. Also contains settle, cmap and exclusion
sections, if present.

anumb_to_atom(anumb)
Returns the atom object corresponding to an atom number

renumber_atoms()

Reset the molecule’s atoms number to be 1-indexed

48 Chapter 4. Contact

https://github.com/resal81/PyTopol

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

class gromacs.fileformats.blocks.Atom

Class that represents an Atom

Contains only the simplest atom attributes, that are contained like in section example below.

Molecule cantains an atoms that’s a list-container for Atom instances.

class gromacs.fileformats.blocks.Param(format)
Class that represents an abstract Parameter.

This class is the parent to AtomType, BondType and all the other parameter types.

The class understands a parameter line and that a comment that may follow. CMapType is an exception (it’s a
multi-line parameter).

convert() provides a rudimentary support for parameter unit conversion between GROMACS and CHARMM
notation: change kJ/mol into kcal/mol and nm into Angstrom.

disabled for supressing output when writing-out to a file.

class gromacs.fileformats.blocks.AtomType(format)

class gromacs.fileformats.blocks.BondType(format)

class gromacs.fileformats.blocks.AngleType(format)

class gromacs.fileformats.blocks.DihedralType(format)

class gromacs.fileformats.blocks.ImproperType(format)

class gromacs.fileformats.blocks.CMapType(format)

class gromacs.fileformats.blocks.InteractionType(format)

class gromacs.fileformats.blocks.SettleType(format)

class gromacs.fileformats.blocks.ConstraintType(format)

class gromacs.fileformats.blocks.NonbondedParamType(format)

class gromacs.fileformats.blocks.VirtualSites3Type(format)

class gromacs.fileformats.blocks.Exclusion

Class to define non-interacting pairs of atoms, or “exclusions”.

Note: Does not inherit from Param unlike other classes in blocks

History

Sources adapted from code by Reza Salari https://github.com/resal81/PyTopol

4.5. API documentation 49

https://github.com/resal81/PyTopol

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.fileformats.convert— converting entries of tables

The Autoconverter converts input values to appropriate Python types.

It is mainly used by gromacs.fileformats.xpm.XPM to automagically generate useful NumPy arrays from xpm
files. Custom conversions beyond the default ones in Autoconverter can be provided with the constructor keyword
mapping.

See also:

The Autoconverter class was taken and slightly adapted from recsql.converter in RecSQL.

class gromacs.fileformats.convert.Autoconverter(mode='fancy', mapping=None, active=True,
sep=False, **kwargs)

Automatically convert an input value to a special python object.

The Autoconverter.convert() method turns the value into a special python value and casts strings to the
“best” type (see besttype()).

The defaults for the conversion of a input field value to a special python value are:

value python
‘---’ None
‘’ None
‘True’ True
‘x’ True
‘X’ True
‘yes’ True
‘Present’ True
‘False’ False
‘-’ False
‘no’ False
‘None’ False
‘none’ False

If the sep keyword is set to a string instead of False then values are split into tuples. Probably the most convenient
way to use this is to set sep = True (or None) because this splits on all white space whereas sep = ‘ ‘ would split
multiple spaces.

Example

• With sep = True: ‘foo bar 22 boing ---’ –> (‘foo’, ‘bar’, 22, ‘boing’, None)

• With sep = ‘,’: 1,2,3,4 –> (1,2,3,4)

Initialize the converter.

Arguments

mode
defines what the converter does

“simple”
convert entries with besttype()

“singlet”
convert entries with besttype() and apply mappings

50 Chapter 4. Contact

http://orbeckst.github.com/RecSQL/

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

“fancy”
first splits fields into lists, tries mappings, and does the stuff that “singlet” does

“unicode”
convert all entries with to_unicode()

mapping
any dict-like mapping that supports lookup. If``None`` then the hard-coded defaults are used

active or autoconvert
initial state of the Autoconverter.active toggle. False deactivates any conversion.
[True]

sep
character to split on (produces lists); use True or None (!) to split on all white space.

Changed in version 0.7.0: removed encoding keyword argument

convert(x)
Convert x (if in the active state)

active

If set to True then conversion takes place; False just returns besttype() applid to the value.

property active

Toggle the state of the Autoconverter. True uses the mode, False does nothing

gromacs.fileformats.convert.besttype(x)
Convert string x to the most useful type, i.e. int, float or unicode string.

If x is a quoted string (single or double quotes) then the quotes are stripped and the enclosed string returned.

Note: Strings will be returned as Unicode strings (using to_unicode()).

Changed in version 0.7.0: removed encoding keyword argument

gromacs.fileformats.convert.to_unicode(obj)
Convert obj to unicode (if it can be be converted).

Conversion is only attempted if obj is a string type (as determined by str).

Changed in version 0.7.0: removed encoding keyword argument

gromacs.utilities – Helper functions and classes

The module defines some convenience functions and classes that are used in other modules; they do not make use of
gromacs.tools or gromacs.cbook and can be safely imported at any time.

4.5. API documentation 51

https://docs.python.org/3/library/stdtypes.html#str

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Classes

FileUtils provides functions related to filename handling. It can be used as a base or mixin class. The gromacs.
analysis.Simulation class is derived from it.

class gromacs.utilities.FileUtils

Mixin class to provide additional file-related capabilities.

check_file_exists(filename, resolve='exception', force=None)
If a file exists then continue with the action specified in resolve.

resolve must be one of

“ignore”
always return False

“indicate”
return True if it exists

“warn”
indicate and issue a UserWarning

“exception”
raise IOError if it exists

Alternatively, set force for the following behaviour (which ignores resolve):

True
same as resolve = “ignore” (will allow overwriting of files)

False
same as resolve = “exception” (will prevent overwriting of files)

None
ignored, do whatever resolve says

default_extension = None

Default extension for files read/written by this class.

filename(filename=None, ext=None, set_default=False, use_my_ext=False)
Supply a file name for the class object.

Typical uses:

fn = filename() ---> <default_filename>
fn = filename('name.ext') ---> 'name'
fn = filename(ext='pickle') ---> <default_filename>'.pickle'
fn = filename('name.inp','pdf') --> 'name.pdf'
fn = filename('foo.pdf',ext='png',use_my_ext=True) --> 'foo.pdf'

The returned filename is stripped of the extension (use_my_ext=False) and if provided, another extension
is appended. Chooses a default if no filename is given.

Raises a ValueError exception if no default file name is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a default ext tension.

Changed in version 0.3.1: An empty string as ext = “” will suppress appending an extension.

52 Chapter 4. Contact

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/exceptions.html#IOError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

infix_filename(name, default, infix, ext=None)
Unless name is provided, insert infix before the extension ext of default.

class gromacs.utilities.AttributeDict

A dictionary with pythonic access to keys as attributes — useful for interactive work.

class gromacs.utilities.Timedelta

Extension of datetime.timedelta.

Provides attributes ddays, dhours, dminutes, dseconds to measure the delta in normal time units.

ashours gives the total time in fractional hours.

Functions

Some additional convenience functions that deal with files and directories:

gromacs.utilities.openany(directory[, mode='r'])
Context manager to open a compressed (bzip2, gzip) or plain file (uses anyopen()).

gromacs.utilities.anyopen(datasource, mode='rt', reset=True)
Open datasource (gzipped, bzipped, uncompressed) and return a stream.

datasource can be a filename or a stream (see isstream()). By default, a stream is reset to its start if possible
(via seek() or reset()).

If possible, the attribute stream.name is set to the filename or “<stream>” if no filename could be associated
with the datasource.

Arguments

datasource
a file (from file or open()) or a stream (e.g. from urllib2.urlopen() or cStringIO.
StringIO)

mode
{‘r’, ‘w’, ‘a’} (optional), Open in r(ead), w(rite) or a(ppen) mode. More complicated modes
(‘r+’, ‘w+’, . . .) are not supported; only the first letter of mode is used and thus any additional
modifiers are silently ignored.

reset
bool (optional), try to read (mode ‘r’) the stream from the start

Returns
file-like object

See also:

openany() to be used with the with statement.

gromacs.utilities.isstream(obj)
Detect if obj is a stream.

We consider anything a stream that has the methods

• close()

and either set of the following

• read(), readline(), readlines()

• write(), writeline(), writelines()

4.5. API documentation 53

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/io.html#io.IOBase.seek
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/reference/compound_stmts.html#with

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Arguments

obj
stream or str

Returns
bool, True if obj is a stream, False otherwise

See also:

io

New in version 0.7.1.

gromacs.utilities.realpath(*args)
Join all args and return the real path, rooted at /.

Expands ~ and environment variables such as $HOME.

Returns None if any of the args is none.

gromacs.utilities.in_dir(directory[, create=True])
Context manager to execute a code block in a directory.

• The directory is created if it does not exist (unless create = False is set)

• At the end or after an exception code always returns to the directory that was the current directory before
entering the block.

gromacs.utilities.find_first(filename, suffices=None)
Find first filename with a suffix from suffices.

Arguments

filename
base filename; this file name is checked first

suffices
list of suffices that are tried in turn on the root of filename; can contain the ext separator
(os.path.extsep) or not

Returns
The first match or None.

gromacs.utilities.withextsep(extensions)
Return list in which each element is guaranteed to start with os.path.extsep.

gromacs.utilities.which(program)

Determine full path of executable program on PATH.

(Jay at http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python)

New in version 0.5.1.

Functions that improve list processing and which do not treat strings as lists:

gromacs.utilities.iterable(obj)
Returns True if obj can be iterated over and is not a string.

gromacs.utilities.asiterable(obj)
Returns obj so that it can be iterated over; a string is not treated as iterable

54 Chapter 4. Contact

https://docs.python.org/3/library/io.html#module-io
http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.utilities.firstof(obj)
Returns the first entry of a sequence or the obj.

Treats strings as single objects.

Functions that help handling Gromacs files:

gromacs.utilities.unlink_f(path)
Unlink path but do not complain if file does not exist.

gromacs.utilities.unlink_gmx(*args)
Unlink (remove) Gromacs file(s) and all corresponding backups.

gromacs.utilities.unlink_gmx_backups(*args)
Unlink (rm) all backup files corresponding to the listed files.

gromacs.utilities.number_pdbs(*args, **kwargs)
Rename pdbs x1.pdb . . . x345.pdb –> x0001.pdb . . . x0345.pdb

Arguments

• args: filenames or glob patterns (such as “pdb/md*.pdb”)

• format: format string including keyword num [“%(num)04d”]

Functions that make working with matplotlib easier:

gromacs.utilities.activate_subplot(numPlot)
Make subplot numPlot active on the canvas.

Use this if a simple subplot(numRows, numCols, numPlot) overwrites the subplot instead of activating it.

gromacs.utilities.remove_legend(ax=None)
Remove legend for axes or gca.

See http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html

Miscellaneous functions:

gromacs.utilities.convert_aa_code(x)
Converts between 3-letter and 1-letter amino acid codes.

gromacs.utilities.autoconvert(s)
Convert input to a numerical type if possible.

1. A non-string object is returned as it is

2. Try conversion to int, float, str.

gromacs.utilities.hasmethod(obj, m)

Return True if object obj contains the method m.

New in version 0.7.1.

4.5. API documentation 55

http://matplotlib.sourceforge.net/
http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Data

gromacs.utilities.amino_acid_codes = {'A': 'ALA', 'C': 'CYS', 'D': 'ASP', 'E': 'GLU',
'F': 'PHE', 'G': 'GLY', 'H': 'HIS', 'I': 'ILE', 'K': 'LYS', 'L': 'LEU', 'M': 'MET', 'N':
'ASN', 'P': 'PRO', 'Q': 'GLN', 'R': 'ARG', 'S': 'SER', 'T': 'THR', 'V': 'VAL', 'W':
'TRP', 'Y': 'TYR'}

translation table for 1-letter codes –> 3-letter codes .. Note: This does not work for HISB and non-default charge
state aa!

analysis.collections – Handling of groups of simulation instances

This module contains classes and functions that combine multiple gromacs.analysis.core.Simulation objects.
In this way the same kind of analysis or plotting task can be carried out simultaneously for all simulations in the
collection.

class gromacs.collections.Collection(iterable=(), /)
Multiple objects (organized as a list).

Methods are applied to all objects in the Collection and returned as new Collection:

>>> from gromacs.analysis.collections import Collection
>>> animals = Collection(['ant', 'boar', 'ape', 'gnu'])
>>> animals.startswith('a')
Collection([True, False, True, False])

Similarly, attributes are returned as a Collection.

Using Collection.save() one can save the whole collection to disk and restore it later with the Collection.
load() method

>>> animals.save('zoo')
>>> arc = Collection()
>>> arc.load('zoo')
>>> arc.load('zoo', append=True)
>>> arc
['ant', 'boar', 'ape', 'gnu', 'ant', 'boar', 'ape', 'gnu']

gromacs.tools – Gromacs commands classes

The underlying idea of GromacsWrapper is to automatically generate Python classes that run the actual GROMACS
tools. These classes are written in such a way that they can be called as if they were functions with parameters resem-
bling the GROMACS tools commandline arguments. This a two-step process when gromacs is imported: First a tool
class is generated for each GROMACS tool (the Command list). Then an instance of each of these classes is instantiated
in placed into the top level gromacs module. Thus, gromacs.grompp is an instance of gromacs.tools.Grompp.
Users typically only access the tool instances at the top level of the module.

Note: Because the tool instances are autogenerated on the fly and depend on the installed GROMACS release, there
is no autogenerated documentation available for them. Use in Python help(gromacs.grompp) to get help.

The following documentation for the gromacs.tools module describes in more detail how GROMACS tools are
generated and managed and is primarily of interest to developers.

56 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Gromacs tool instantiation

A Gromacs command class produces an instance of a Gromacs tool command (gromacs.core.GromacsCommand),
any argument or keyword argument supplied will be used as default values for when the command is run.

Classes have the same name of the corresponding Gromacs tool with the first letter capitalized and dot and dashes
replaced by underscores to make it a valid python identifier.

The list of tools to be loaded is configured with the tools and groups options of the ~/.gromacswrapper.cfg file.
Guesses are made if these options are not provided; see gromacs.config for details.

In the following example we create two instances of the gromacs.tools.Trjconv command (which runs the Gromacs
trjconv command):

from gromacs.tools import Trjconv

trjconv = tools.Trjconv()
trjconv_compact = tools.Trjconv(ur='compact', center=True, boxcenter='tric', pbc='mol',

input=('protein','system'))

The first one, trjconv, behaves as the standard commandline tool but the second one, trjconv_compact, will by
default create a compact representation of the input data by taking into account the shape of the unit cell. Of course,
the same effect can be obtained by providing the corresponding arguments to trjconv but by naming the more specific
command differently one can easily build up a library of small tools that will solve a specific, repeatedly encountered
problem reliably. This is particularly helpful when doing interactive work.

Aliased commands

GromacsWrapper has been around since ancient GROMACS 4.5.x and throughout the history it has provided a way
to run different versions of GROMACS commands with the same Python script in a backwards compatible manner
by aliasing equivalent GROMACS tools to the same GromacsWrapper tool (using NAMES5TO4). Modern GROMACS
(since 5.x and throughout 2016-2023) tools are aliased to their Gromacs 4 tool names for backwards compatibility.

For example, in “classic” GROMACS we had the g_sas command that became gmx sasa since GROMACS 5.x. In
GromacsWrapper you can access the same tool as gromacs.g_sas or gromacs.sasa.

Warning: You should check that the different GROMACS versions of tools give equivalent answers for your
problem. The aliasing just makes it easy for you to call the tool in the same manner. You are still responsible for
validating your own results.

Sometimes GROMACS changes commands in an way that is fundamentally incompatible and in this way there is not
much that GromacsWrapper can do. The best you can probably do in your own scripts is to use gromacs.release
(see docs for gromacs.tools.Release) to check in your own script which release of GROMACS is running and
then call different tools depending on what you find. For example, GROMACS 2023 replaced gmx do_dssp with gmx
dssp which is not directly argument-compatible so GromacsWrapper does not alias it. Therefore, scripts relying on
gromacs.do_dssp will break unless you account for it explicitly with code similar to

release_year = int(gromacs.release()[:4])
if release_year >= 2023:

gromacs.dssp(s=TPR, f=XTC, sel="Protein",
o="dssp.dat", pbc=True, hmode="dssp")

else:
(continues on next page)

4.5. API documentation 57

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

(continued from previous page)

gromacs.do_dssp(s=TPR, f=XTC, input=["Protein"]
ssdump="ssdump.dat", o="ss.xpm", sc="scount.xvg")

Note: It is recommended to keep a single version of all tools for a project and record the version in the methods section
of a publication.

Multi index

It is possible to extend the tool commands and patch in additional functionality. For example, the
GromacsCommandMultiIndex class makes a command accept multiple index files and concatenates them on the fly;
the behaviour mimics Gromacs’ “multi-file” input that has not yet been enabled for all tools.

class gromacs.tools.GromacsCommandMultiIndex(**kwargs)
Command class that accept multiple index files.

It works combining multiple index files into a single temporary one so that tools that do not (yet) support multi
index files as input can be used as if they did.

It creates a new file only if multiple index files are supplied.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have ap-
peared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand('v', f=['md1.xtc','md2.xtc'], o='processed.xtc', t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments ('v') or as keyword
argument (v=True); note the quotes in the first case. Negating a boolean switch can be done with
'nov', nov=True or v=False (and even nov=False works as expected: it is the same as v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files must be
supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to the
illegal keyword or so it must be underscore-quoted:

cmd(...., _or='mindistres.xvg')

Command execution

58 Chapter 4. Contact

https://docs.python.org/3/library/exceptions.html#SyntaxError

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine how
the command class behaves. They are only useful when instantiating a class, i.e. they determine how
this tool behaves during all future invocations although it can be changed by setting failuremode.
This is mostly of interest to developers.

Keywords

failure
determines how a failure of the gromacs command is treated; it can be one of the following:

‘raise’
raises GromacsError if command fails

‘warn’
issue a GromacsFailureWarning

None
just continue silently

doc
[string] additional documentation (ignored) []

Changed in version 0.6.0: The doc keyword is now ignored (because it was not worth the effort to make it work
with the lazy-loading of docs).

gromacs.tools.merge_ndx(*args)
Takes one or more index files and optionally one structure file and returns a path for a new merged index file.

Parameters
args – index files and zero or one structure file

Returns
path for the new merged index file

Virtual Gromacs commands

The following “commands” do not exist as tools in the Gromacs package but are added here because they are useful.

class gromacs.tools.Release

Release string of the currently loaded Gromacs version.

Returns
str, Release string such as “2018.2” or “4.6.5” or None if Gromacs can not be found.

Note: The release string is obtained from the output of gmx grompp -version, specifically the line starting
with Gromacs version:. If this changes then this function will break.

4.5. API documentation 59

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Example

This command allows user code to work around known issues with old/new versions of Gromacs:

if gromacs.release.startswith("4"):
do something for classic Gromacs

else:
do it the modern way

(Note that calling gromacs.release() will simply return the release string, which is equivalent to
str(gromacs.release). For convenience, the startswith() method exists, which directly works with the
release string.)

New in version 0.8.0.

Helpers

These helper functions are necessary for collecting and setting up the Gromacs tools. They are mostly of interest to
developers.

gromacs.tools.NAMES5TO4 = {'check': 'gmxcheck', 'convert-tpr': 'tpbconv', 'distance':
'g_dist', 'do_dssp': 'do_dssp', 'dump': 'gmxdump', 'editconf': 'editconf', 'eneconv':
'eneconv', 'gangle': 'g_sgangle', 'genconf': 'genconf', 'genion': 'genion',
'genrestr': 'genrestr', 'grompp': 'grompp', 'make_edi': 'make_edi', 'make_ndx':
'make_ndx', 'mdrun': 'mdrun', 'pdb2gmx': 'pdb2gmx', 'sasa': 'g_sas', 'solvate':
'genbox', 'trjcat': 'trjcat', 'trjconv': 'trjconv', 'trjorder': 'trjorder', 'xpm2ps':
'xpm2ps'}

dict of names in Gromacs 5 that correspond to an equivalent tool in in Gromacs 4. The names are literal Gromacs
names.

gromacs.tools.V4TOOLS = ('g_cluster', 'g_dyndom', 'g_mdmat', 'g_principal', 'g_select',
'g_wham', 'mdrun', 'do_dssp', 'g_clustsize', 'g_enemat', 'g_membed', 'g_protonate',
'g_sgangle', 'g_wheel', 'mdrun_d', 'editconf', 'g_confrms', 'g_energy', 'g_mindist',
'g_rama', 'g_sham', 'g_x2top', 'mk_angndx', 'eneconv', 'g_covar', 'g_filter', 'g_morph',
'g_rdf', 'g_sigeps', 'genbox', 'pdb2gmx', 'g_anadock', 'g_current', 'g_gyrate', 'g_msd',
'g_sorient', 'genconf', 'g_anaeig', 'g_density', 'g_h2order', 'g_nmeig', 'g_rms',
'g_spatial', 'genion', 'tpbconv', 'g_analyze', 'g_densmap', 'g_hbond', 'g_nmens',
'g_rmsdist', 'g_spol', 'genrestr', 'trjcat', 'g_angle', 'g_dielectric', 'g_helix',
'g_nmtraj', 'g_rmsf', 'g_tcaf', 'gmxcheck', 'trjconv', 'g_bar', 'g_dih', 'g_helixorient',
'g_order', 'g_rotacf', 'g_traj', 'gmxdump', 'trjorder', 'g_bond', 'g_dipoles',
'g_kinetics', 'g_pme_error', 'g_rotmat', 'g_tune_pme', 'grompp', 'g_bundle', 'g_disre',
'g_lie', 'g_polystat', 'g_saltbr', 'g_vanhove', 'make_edi', 'xpm2ps', 'g_chi', 'g_dist',
'g_luck', 'g_potential', 'g_sas', 'g_velacc', 'make_ndx')

List of tools coming with standard Gromacs 4.x.

gromacs.tools.tool_factory(clsname, name, driver, base=<class 'gromacs.core.GromacsCommand'>)
Factory for GromacsCommand derived types.

gromacs.tools.load_v4_tools()

Load Gromacs 4.x tools automatically using some heuristic.

Tries to load tools (1) in configured tool groups (2) and fails back to automatic detection from GMXBIN (3) then
to a prefilled list.

Also load any extra tool configured in ~/.gromacswrapper.cfg

60 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Returns
dict mapping tool names to GromacsCommand classes

gromacs.tools.load_v5_tools()

Load Gromacs 2023/. . . /2016/5.x tools automatically using some heuristic.

Tries to load tools (1) using the driver from configured groups (2) and falls back to automatic detection from
GMXBIN (3) then to rough guesses.

In all cases the command gmx help is run to get all tools available.

Returns
dict mapping tool names to GromacsCommand classes

gromacs.tools.find_executables(path)
Find executables in a path.

Searches executables in a directory excluding some know commands unusable with GromacsWrapper.

Parameters
path – dirname to search for

Returns
list of executables

gromacs.tools.make_valid_identifier(name)
Turns tool names into valid identifiers.

Parameters
name – tool name

Returns
valid identifier

exception gromacs.tools.GromacsToolLoadingError

Raised when no Gromacs tool could be found.

Gromacs tools

Each command class in the Command list below is used to create a command instance in the top level gromacsmodule
if the Gromacs tools can be found in the file system (see gromacs.config). For example, the class Grompp is used to
create the command gromacs.grompp.

Registry

The Command list below reflects the Gromacs commands that were available when the documentation was built and can
vary from installation to installation. All currently available Gromacs commands are listed in the dictionary gromacs.
tools.registry, in particular, gromacs.tools.registry.keys() lists the names.

gromacs.tools.registry = {'Grompp': <gromacs.tools.Grompp', 'Mdrun':
<gromacs.tools.Mdrun', ...}

dict that contains all currently available Gromacs commands as well as the Virtual Gromacs commands. The
registry is generated when the gromacs.tools package is imported for the first time.

4.5. API documentation 61

https://docs.python.org/3/library/stdtypes.html#dict

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Command list

The list below reflects the Gromacs commands that were available when the documentation was built and can vary from
installation to installation. All currently available Gromacs commands are listed in the dictionary gromacs.tools.
registry, which can be processed at run time.

class gromacs.tools.Anaeig

class gromacs.tools.Analyze

class gromacs.tools.Angle

class gromacs.tools.Awh

class gromacs.tools.Bar

class gromacs.tools.Bundle

class gromacs.tools.Check

class gromacs.tools.Chi

class gromacs.tools.Cluster

class gromacs.tools.Clustsize

class gromacs.tools.Confrms

class gromacs.tools.Convert_tpr

class gromacs.tools.Convert_trj

class gromacs.tools.Covar

class gromacs.tools.Current

class gromacs.tools.Density

class gromacs.tools.Densmap

class gromacs.tools.Densorder

class gromacs.tools.Dielectric

class gromacs.tools.Dipoles

class gromacs.tools.Disre

class gromacs.tools.Distance

class gromacs.tools.Dos

class gromacs.tools.Dssp

class gromacs.tools.Dump

class gromacs.tools.Dyecoupl

class gromacs.tools.Editconf

62 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

class gromacs.tools.Eneconv

class gromacs.tools.Enemat

class gromacs.tools.Energy

class gromacs.tools.Extract_cluster

class gromacs.tools.Filter

class gromacs.tools.Freevolume

class gromacs.tools.Gangle

class gromacs.tools.Genconf

class gromacs.tools.Genion

class gromacs.tools.Genrestr

class gromacs.tools.Grompp

class gromacs.tools.Gyrate

class gromacs.tools.H2order

class gromacs.tools.Hbond

class gromacs.tools.Helix

class gromacs.tools.Helixorient

class gromacs.tools.Help

class gromacs.tools.Hydorder

class gromacs.tools.Insert_molecules

class gromacs.tools.Lie

class gromacs.tools.Make_edi

class gromacs.tools.Make_ndx

class gromacs.tools.Mdmat

class gromacs.tools.Mdrun

class gromacs.tools.Mindist

class gromacs.tools.Mk_angndx

class gromacs.tools.Msd

class gromacs.tools.Nmeig

class gromacs.tools.Nmens

class gromacs.tools.Nmr

class gromacs.tools.Nmtraj

4.5. API documentation 63

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

class gromacs.tools.Nonbonded_benchmark

class gromacs.tools.Order

class gromacs.tools.Pairdist

class gromacs.tools.Pdb2gmx

class gromacs.tools.Pme_error

class gromacs.tools.Polystat

class gromacs.tools.Potential

class gromacs.tools.Principal

class gromacs.tools.Rama

class gromacs.tools.Rdf

class gromacs.tools.Report_methods

class gromacs.tools.Rms

class gromacs.tools.Rmsdist

class gromacs.tools.Rmsf

class gromacs.tools.Rotacf

class gromacs.tools.Rotmat

class gromacs.tools.Saltbr

class gromacs.tools.Sans

class gromacs.tools.Sasa

class gromacs.tools.Saxs

class gromacs.tools.Select

class gromacs.tools.Sham

class gromacs.tools.Sigeps

class gromacs.tools.Solvate

class gromacs.tools.Sorient

class gromacs.tools.Spatial

class gromacs.tools.Spol

class gromacs.tools.Tcaf

class gromacs.tools.Traj

class gromacs.tools.Trajectory

class gromacs.tools.Trjcat

64 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

class gromacs.tools.Trjconv

class gromacs.tools.Trjorder

class gromacs.tools.Tune_pme

class gromacs.tools.Vanhove

class gromacs.tools.Velacc

class gromacs.tools.Wham

class gromacs.tools.Wheel

class gromacs.tools.X2top

class gromacs.tools.Xpm2ps

class gromacs.tools.G_anaeig

class gromacs.tools.G_analyze

class gromacs.tools.G_angle

class gromacs.tools.G_awh

class gromacs.tools.G_bar

class gromacs.tools.G_bundle

class gromacs.tools.Gmxcheck

class gromacs.tools.G_chi

class gromacs.tools.G_cluster

class gromacs.tools.G_clustsize

class gromacs.tools.G_confrms

class gromacs.tools.Tpbconv

class gromacs.tools.G_convert_trj

class gromacs.tools.G_covar

class gromacs.tools.G_current

class gromacs.tools.G_density

class gromacs.tools.G_densmap

class gromacs.tools.G_densorder

class gromacs.tools.G_dielectric

class gromacs.tools.G_dipoles

class gromacs.tools.G_disre

class gromacs.tools.G_dist

4.5. API documentation 65

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

class gromacs.tools.G_dos

class gromacs.tools.G_dssp

class gromacs.tools.Gmxdump

class gromacs.tools.G_dyecoupl

class gromacs.tools.G_enemat

class gromacs.tools.G_energy

class gromacs.tools.G_extract_cluster

class gromacs.tools.G_filter

class gromacs.tools.G_freevolume

class gromacs.tools.G_sgangle

class gromacs.tools.G_gyrate

class gromacs.tools.G_h2order

class gromacs.tools.G_hbond

class gromacs.tools.G_helix

class gromacs.tools.G_helixorient

class gromacs.tools.G_help

class gromacs.tools.G_hydorder

class gromacs.tools.G_insert_molecules

class gromacs.tools.G_lie

class gromacs.tools.G_mdmat

class gromacs.tools.G_mindist

class gromacs.tools.G_mk_angndx

class gromacs.tools.G_msd

class gromacs.tools.G_nmeig

class gromacs.tools.G_nmens

class gromacs.tools.G_nmr

class gromacs.tools.G_nmtraj

class gromacs.tools.G_nonbonded_benchmark

class gromacs.tools.G_order

class gromacs.tools.G_pairdist

class gromacs.tools.G_pme_error

66 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

class gromacs.tools.G_polystat

class gromacs.tools.G_potential

class gromacs.tools.G_principal

class gromacs.tools.G_rama

class gromacs.tools.G_rdf

class gromacs.tools.G_report_methods

class gromacs.tools.G_rms

class gromacs.tools.G_rmsdist

class gromacs.tools.G_rmsf

class gromacs.tools.G_rotacf

class gromacs.tools.G_rotmat

class gromacs.tools.G_saltbr

class gromacs.tools.G_sans

class gromacs.tools.G_sas

class gromacs.tools.G_saxs

class gromacs.tools.G_select

class gromacs.tools.G_sham

class gromacs.tools.G_sigeps

class gromacs.tools.Genbox

class gromacs.tools.G_sorient

class gromacs.tools.G_spatial

class gromacs.tools.G_spol

class gromacs.tools.G_tcaf

class gromacs.tools.G_traj

class gromacs.tools.G_trajectory

class gromacs.tools.G_tune_pme

class gromacs.tools.G_vanhove

class gromacs.tools.G_velacc

class gromacs.tools.G_wham

class gromacs.tools.G_wheel

class gromacs.tools.G_x2top

4.5. API documentation 67

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

4.5.2 Gromacs building blocks

Building blocks are small classes or functions that can be freely combined in setup or analysis scripts or used interac-
tively. These modules act as “library” for common tasks.

gromacs.cbook – Gromacs Cook Book

The cbook (cook book) module contains short recipes for tasks that are often repeated. In the simplest case this is just
one of the gromacs tools with a certain set of default command line options.

By abstracting and collecting these invocations here, errors can be reduced and the code snippets can also serve as
canonical examples for how to do simple things.

Miscellaneous canned Gromacs commands

Simple commands with new default options so that they solve a specific problem (see also Manipulating trajectories
and structures):

gromacs.cbook.rmsd_backbone([s="md.tpr", f="md.xtc"[, ...]])
Computes the RMSD of the “Backbone” atoms after fitting to the “Backbone” (including both translation and
rotation).

Manipulating trajectories and structures

Standard invocations for manipulating trajectories.

gromacs.cbook.trj_compact([s="md.tpr", f="md.xtc", o="compact.xtc"[, ...]])
Writes an output trajectory or frame with a compact representation of the system centered on the protein. It
centers on the group “Protein” and outputs the whole “System” group.

gromacs.cbook.trj_xyfitted([s="md.tpr", f="md.xtc"[, ...]])
Writes a trajectory centered and fitted to the protein in the XY-plane only.

This is useful for membrane proteins. The system must be oriented so that the membrane is in the XY plane. The
protein backbone is used for the least square fit, centering is done for the whole protein., but this can be changed
with the input = ('backbone', 'protein','system') keyword.

Note: Gromacs 4.x only

gromacs.cbook.trj_fitandcenter(xy=False, **kwargs)
Center everything and make a compact representation (pass 1) and fit the system to a reference (pass 2).

Keywords

s
input structure file (tpr file required to make molecule whole); if a list or tuple is provided
then s[0] is used for pass 1 (should be a tpr) and s[1] is used for the fitting step (can be a pdb
of the whole system)

If a second structure is supplied then it is assumed that the fitted trajectory should not be
centered.

f
input trajectory

68 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

o
output trajectory

input
A list with three groups. The default is ['backbone', 'protein','system']. The
fit command uses all three (1st for least square fit, 2nd for centering, 3rd for output), the
centered/make-whole stage use 2nd for centering and 3rd for output.

input1
If input1 is supplied then input is used exclusively for the fitting stage (pass 2) and input1 for
the centering (pass 1).

n
Index file used for pass 1 and pass 2.

n1
If n1 is supplied then index n1 is only used for pass 1 (centering) and n for pass 2 (fitting).

xy
[boolean] If True then only do a rot+trans fit in the xy plane (good for membrane simula-
tions); default is False.

kwargs
All other arguments are passed to Trjconv.

Note that here we first center the protein and create a compact box, using -pbc mol -ur compact -center
-boxcenter tric and write an intermediate xtc. Then in a second pass we perform a rotation+translation fit
(or restricted to the xy plane if xy = True is set) on the intermediate xtc to produce the final trajectory. Doing it
in this order has the disadvantage that the solvent box is rotating around the protein but the opposite order (with
center/compact second) produces strange artifacts where columns of solvent appear cut out from the box—it
probably means that after rotation the information for the periodic boundaries is not correct any more.

Most kwargs are passed to both invocations of gromacs.tools.Trjconv so it does not really make sense to
use eg skip; in this case do things manually.

By default the input to the fit command is (‘backbone’, ‘protein’,’system’); the compact command always uses
the second and third group for its purposes or if this fails, prompts the user.

Both steps cannot performed in one pass; this is a known limitation of trjconv. An intermediate temporary
XTC files is generated which should be automatically cleaned up unless bad things happened.

The function tries to honour the input/output formats. For instance, if you want trr output you need to supply a
trr file as input and explicitly give the output file also a trr suffix.

Note: For big trajectories it can take a very long time and consume a large amount of temporary diskspace.

We follow the g_spatial documentation in preparing the trajectories:

trjconv -s a.tpr -f a.xtc -o b.xtc -center -boxcenter tric -ur compact -pbc mol
trjconv -s a.tpr -f b.xtc -o c.xtc -fit rot+trans

gromacs.cbook.cat(prefix='md', dirname='.', partsdir='parts', fulldir='full', resolve_multi='pass')
Concatenate all parts of a simulation.

The xtc, trr, and edr files in dirname such as prefix.xtc, prefix.part0002.xtc, prefix.part0003.xtc, . . . are

1) moved to the partsdir (under dirname)

2) concatenated with the Gromacs tools to yield prefix.xtc, prefix.trr, prefix.edr, prefix.gro (or prefix.md) in
dirname

4.5. API documentation 69

http://www.gromacs.org/Documentation/Gromacs_Utilities/g_spatial

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

3) Store these trajectories in fulldir

Note: Trajectory files are never deleted by this function to avoid data loss in case of bugs. You will have to
clean up yourself by deleting dirname/partsdir.

Symlinks for the trajectories are not handled well and break the function. Use hard links instead.

Warning: If an exception occurs when running this function then make doubly and triply sure where your
files are before running this function again; otherwise you might overwrite data. Possibly you will need to
manually move the files from partsdir back into the working directory dirname; this should onlu overwrite
generated files so far but check carefully!

Keywords

prefix
deffnm of the trajectories [md]

resolve_multi
how to deal with multiple “final” gro or pdb files: normally there should only be one but in
case of restarting from the checkpoint of a finished simulation one can end up with multiple
identical ones.

• “pass” : do nothing and log a warning

• “guess” : take prefix.pdb or prefix.gro if it exists, otherwise the one of pre-
fix.partNNNN.gro|pdb with the highes NNNN

dirname
change to dirname and assume all tarjectories are located there [.]

partsdir
directory where to store the input files (they are moved out of the way); partsdir must be
manually deleted [parts]

fulldir
directory where to store the final results [full]

class gromacs.cbook.Frames(structure, trj, maxframes=None, format='pdb', **kwargs)
A iterator that transparently provides frames from a trajectory.

The iterator chops a trajectory into individual frames for analysis tools that only work on separate structures such
as gro or pdb files. Instead of turning the whole trajectory immediately into pdb files (and potentially filling the
disk), the iterator can be instructed to only provide a fixed number of frames and compute more frames when
needed.

Note: Setting a limit on the number of frames on disk can lead to longish waiting times because trjconv
must re-seek to the middle of the trajectory and the only way it can do this at the moment is by reading frames
sequentially. This might still be preferrable to filling up a disk, though.

Warning: The maxframes option is not implemented yet; use the dt option or similar to keep the number of
frames manageable.

70 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Set up the Frames iterator.

Arguments

structure
name of a structure file (tpr, pdb, . . .)

trj
name of the trajectory (xtc, trr, . . .)

format
output format for the frames, eg “pdb” or “gro” [pdb]

maxframes
[int] maximum number of frames that are extracted to disk at one time; set to None to extract
the whole trajectory at once. [None]

kwargs
All other arguments are passed to class:~gromacs.tools.Trjconv; the only options that cannot
be changed are sep and the output file name o.

property all_frames

Unordered list of all frames currently held on disk.

cleanup()

Clean up all temporary frames (which can be HUGE).

delete_frames()

Delete all frames.

extract()

Extract frames from the trajectory to the temporary directory.

framenumber

Holds the current frame number of the currently extracted batch of frames. Increases when iterating.

totalframes

Total number of frames read so far; only important when maxframes > 0 is used.

class gromacs.cbook.Transformer(s='topol.tpr', f='traj.xtc', n=None, force=None, dirname='.', outdir=None)
Class to handle transformations of trajectories.

1. Center, compact, and fit to reference structure in tpr (optionally, only center in the xy plane):
center_fit()

2. Write compact xtc and tpr with water removed: strip_water()

3. Write compact xtc and tpr only with protein: keep_protein_only()

Set up Transformer with structure and trajectory.

Supply n = tpr, f = xtc (and n = ndx) relative to dirname.

Keywords

s
tpr file (or similar); note that this should not contain position restraints if it is to be used with
a reduced system (see strip_water())

f
trajectory (xtc, trr, . . .)

4.5. API documentation 71

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

n
index file (it is typically safe to leave this as None; in cases where a trajectory needs to be
centered on non-standard groups this should contain those groups)

force
Set the default behaviour for handling existing files:

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

dirname
directory in which all operations are performed, relative paths are interpreted relative to
dirname [.]

outdir
directory under which output files are placed; by default the same directory where the input
files live

center_fit(**kwargs)
Write compact xtc that is fitted to the tpr reference structure.

See gromacs.cbook.trj_fitandcenter() for details and description of kwargs (including input, in-
put1, n and n1 for how to supply custom index groups). The most important ones are listed here but in most
cases the defaults should work.

Keywords

s
Input structure (typically the default tpr file but can be set to some other file with a different
conformation for fitting)

n
Alternative index file.

o
Name of the output trajectory.

xy
[Boolean] If True then only fit in xy-plane (useful for a membrane normal to z). The
default is False.

force

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

Returns
dictionary with keys tpr, xtc, which are the names of the the new files

fit(xy=False, **kwargs)
Write xtc that is fitted to the tpr reference structure.

Runs gromacs.tools.trjconv with appropriate arguments for fitting. The most important kwargs are
listed here but in most cases the defaults should work.

Note that the default settings do not include centering or periodic boundary treatment as this often does not
work well with fitting. It is better to do this as a separate step (see center_fit() or gromacs.cbook.
trj_fitandcenter())

72 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Keywords

s
Input structure (typically the default tpr file but can be set to some other file with a different
conformation for fitting)

n
Alternative index file.

o
Name of the output trajectory. A default name is created. If e.g. dt = 100 is one of the
kwargs then the default name includes “_dt100ps”.

xy
[boolean] If True then only do a rot+trans fit in the xy plane (good for membrane simula-
tions); default is False.

force
Override standard behavior (potentially dangerous) - True: overwrite existing trajectories
- False: throw a IOError exception - None: skip existing and log a warning [default]

fitgroup
index group to fit on [“backbone”]

Note: If keyword input is supplied then it will override fitgroup; input = [fitgroup,
outgroup]

kwargs
kwargs are passed to trj_xyfitted()

Returns
dictionary with keys tpr, xtc, which are the names of the the new files

keep_protein_only(os=None, o=None, on=None, compact=False, groupname='proteinonly', **kwargs)
Write xtc and tpr only containing the protein.

Keywords

os
Name of the output tpr file; by default use the original but insert “proteinonly” before suffix.

o
Name of the output trajectory; by default use the original name but insert “proteinonly”
before suffix.

on
Name of a new index file.

compact
True: write a compact and centered trajectory False: use trajectory as it is [False]

groupname
Name of the protein-only group.

keepalso
List of literal make_ndx selections of additional groups that should be kept, e.g. [‘resname
DRUG’, ‘atom 6789’].

force
[Boolean]

4.5. API documentation 73

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

kwargs
are passed on to gromacs.cbook.trj_compact() (unless the values have to be set to
certain values such as s, f, n, o keywords). The input keyword is always mangled: Only the
first entry (the group to centre the trajectory on) is kept, and as a second group (the output
group) groupname is used.

Returns
dictionary with keys tpr, xtc, ndx which are the names of the the new files

Warning: The input tpr file should not have any position restraints; otherwise Gromacs will throw a
hissy-fit and say

Software inconsistency error: Position restraint coordinates are missing

(This appears to be a bug in Gromacs 4.x.)

outfile(p)
Path for an output file.

If outdir is set then the path is outdir/basename(p) else just p

rp(*args)
Return canonical path to file under dirname with components args

If args form an absolute path then just return it as the absolute path.

strip_fit(**kwargs)
Strip water and fit to the remaining system.

First runs strip_water() and then fit(); see there for arguments.

• strip_input is used for strip_water() (but is only useful in special cases, e.g. when there is no
Protein group defined. Then set strip_input = ['Other'].

• input is passed on to fit() and can contain the [center_group, fit_group, output_group]

• fitgroup is only passed to fit() and just contains the group to fit to (“backbone” by default)

Warning: fitgroup can only be a Gromacs default group and not a custom group (because the
indices change after stripping)

• By default fit = “rot+trans” (and fit is passed to fit(), together with the xy = False keyword)

Note: The call signature of strip_water() is somewhat different from this one.

strip_water(os=None, o=None, on=None, compact=False, resn='SOL', groupname='notwater', **kwargs)
Write xtc and tpr with water (by resname) removed.

Keywords

74 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

os
Name of the output tpr file; by default use the original but insert “nowater” before suffix.

o
Name of the output trajectory; by default use the original name but insert “nowater” before
suffix.

on
Name of a new index file (without water).

compact
True: write a compact and centered trajectory False: use trajectory as it is [False]

centergroup
Index group used for centering [“Protein”]

Note: If input is provided (see below under kwargs) then centergroup is ignored and the
group for centering is taken as the first entry in input.

resn
Residue name of the water molecules; all these residues are excluded.

groupname
Name of the group that is generated by subtracting all waters from the system.

force
[Boolean]

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

kwargs
are passed on to gromacs.cbook.trj_compact() (unless the values have to be set to
certain values such as s, f, n, o keywords). The input keyword is always mangled: Only the
first entry (the group to centre the trajectory on) is kept, and as a second group (the output
group) groupname is used.

Returns
dictionary with keys tpr, xtc, ndx which are the names of the the new files

Warning: The input tpr file should not have any position restraints; otherwise Gromacs will throw a
hissy-fit and say

Software inconsistency error: Position restraint coordinates are missing

(This appears to be a bug in Gromacs 4.x.)

gromacs.cbook.get_volume(f)
Return the volume in nm^3 of structure file f.

(Uses gromacs.editconf(); error handling is not good)

4.5. API documentation 75

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Processing output

There are cases when a script has to to do different things depending on the output from a Gromacs tool.

For instance, a common case is to check the total charge after grompping a tpr file. The grompp_qtot function does
just that.

gromacs.cbook.grompp_qtot(*args, **kwargs)
Run gromacs.grompp and return the total charge of the system.

Arguments
The arguments are the ones one would pass to gromacs.grompp().

Returns
The total charge as reported

Some things to keep in mind:

• The stdout output of grompp is only shown when an error occurs. For debugging, look at the log file or
screen output and try running the normal gromacs.grompp() command and analyze the output if the
debugging messages are not sufficient.

• Check that qtot is correct. Because the function is based on pattern matching of the informative output of
grompp it can break when the output format changes. This version recognizes lines like

' System has non-zero total charge: -4.000001e+00'

using the regular expression System has non-zero total charge: *(?P<qtot>[-+]?d*.
d+([eE][-+]d+)?).

gromacs.cbook.get_volume(f)
Return the volume in nm^3 of structure file f.

(Uses gromacs.editconf(); error handling is not good)

gromacs.cbook.parse_ndxlist(output)
Parse output from make_ndx to build list of index groups:

groups = parse_ndxlist(output)

output should be the standard output from make_ndx, e.g.:

rc,output,junk = gromacs.make_ndx(..., input=('', 'q'), stdout=False, stderr=True)

(or simply use

rc,output,junk = cbook.make_ndx_captured(. . .)

which presets input, stdout and stderr; of course input can be overriden.)

Returns
The function returns a list of dicts (groups) with fields

name
name of the groups

nr
number of the group (starts at 0)

natoms
number of atoms in the group

76 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Working with topologies and mdp files

gromacs.cbook.create_portable_topology(topol, struct, **kwargs)
Create a processed topology.

The processed (or portable) topology file does not contain any #include statements and hence can be easily
copied around. It also makes it possible to re-grompp without having any special itp files available.

Arguments

topol
topology file

struct
coordinate (structure) file

Keywords

processed
name of the new topology file; if not set then it is named like topol but with pp_ prepended

includes
path or list of paths of directories in which itp files are searched for

grompp_kwargs*
other options for grompp such as maxwarn=2 can also be supplied

Returns
full path to the processed topology

gromacs.cbook.edit_mdp(mdp, new_mdp=None, extend_parameters=None, **substitutions)
Change values in a Gromacs mdp file.

Parameters and values are supplied as substitutions, eg nsteps=1000.

By default the template mdp file is overwritten in place.

If a parameter does not exist in the template then it cannot be substituted and the parameter/value pair is returned.
The user has to check the returned list in order to make sure that everything worked as expected. At the moment
it is not possible to automatically append the new values to the mdp file because of ambiguities when having to
replace dashes in parameter names with underscores (see the notes below on dashes/underscores).

If a parameter is set to the value None then it will be ignored.

Arguments

mdp
[filename] filename of input (and output filename of new_mdp=None)

new_mdp
[filename] filename of alternative output mdp file [None]

extend_parameters
[string or list of strings] single parameter or list of parameters for which the new values
should be appended to the existing value in the mdp file. This makes mostly sense for a single
parameter, namely ‘include’, which is set as the default. Set to [] to disable. [‘include’]

substitutions
parameter=value pairs, where parameter is defined by the Gromacs mdp file; dashes in pa-
rameter names have to be replaced by underscores. If a value is a list-like object then the
items are written as a sequence, joined with spaces, e.g.

4.5. API documentation 77

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

ref_t=[310,310,310] ---> ref_t = 310 310 310

Returns
Dict of parameters that have not been substituted.

Example

edit_mdp('md.mdp', new_mdp='long_md.mdp', nsteps=100000, nstxtcout=1000, lincs_
→˓iter=2)

Note:

• Dashes in Gromacs mdp parameters have to be replaced by an underscore when supplied as python keyword
arguments (a limitation of python). For example the MDP syntax is lincs-iter = 4 but the correspond-
ing keyword would be lincs_iter = 4.

• If the keyword is set as a dict key, eg mdp_params['lincs-iter']=4 then one does not have to substitute.

• Parameters aa_bb and aa-bb are considered the same (although this should not be a problem in practice
because there are no mdp parameters that only differ by a underscore).

• This code is more compact in Perl as one can use s/// operators: s/^(\s*${key}\s*=\s*).*/
1{val}/

See also:

One can also load the mdp file with gromacs.formats.MDP, edit the object (a dict), and save it again.

gromacs.cbook.add_mdp_includes(topology=None, kwargs=None)
Set the mdp include key in the kwargs dict.

1. Add the directory containing topology.

2. Add all directories appearing under the key includes

3. Generate a string of the form “-Idir1 -Idir2 . . . ” that is stored under the key include (the corresponding mdp
parameter)

By default, the directories . and .. are also added to the include string for the mdp; when fed into gromacs.
cbook.edit_mdp() it will result in a line such as

include = -I. -I.. -I../topology_dir

Note that the user can always override the behaviour by setting the include keyword herself; in this case this
function does nothing.

If no kwargs were supplied then a dict is generated with the single include entry.

Arguments

topology
[top filename] Topology file; the name of the enclosing directory is added to the include path
(if supplied) [None]

kwargs
[dict] Optional dictionary of mdp keywords; will be modified in place. If it contains the
includes keyword with either a single string or a list of strings then these paths will be added
to the include statement.

78 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Returns
kwargs with the include keyword added if it did not exist previously; if the keyword already
existed, nothing happens.

Note: The kwargs dict is modified in place. This function is a bit of a hack. It might be removed once all setup
functions become methods in a nice class.

gromacs.cbook.grompp_qtot(*args, **kwargs)
Run gromacs.grompp and return the total charge of the system.

Arguments
The arguments are the ones one would pass to gromacs.grompp().

Returns
The total charge as reported

Some things to keep in mind:

• The stdout output of grompp is only shown when an error occurs. For debugging, look at the log file or
screen output and try running the normal gromacs.grompp() command and analyze the output if the
debugging messages are not sufficient.

• Check that qtot is correct. Because the function is based on pattern matching of the informative output of
grompp it can break when the output format changes. This version recognizes lines like

' System has non-zero total charge: -4.000001e+00'

using the regular expression System has non-zero total charge: *(?P<qtot>[-+]?d*.
d+([eE][-+]d+)?).

Working with index files

Manipulation of index files (ndx) can be cumbersome because the make_ndx program is not very sophisticated (yet)
compared to full-fledged atom selection expression as available in Charmm, VMD, or MDAnalysis. Some tools help
in building and interpreting index files.

See also:

The gromacs.formats.NDX class can solve a number of index problems in a cleaner way than the classes and functions
here.

class gromacs.cbook.IndexBuilder(struct=None, selections=None, names=None, name_all=None,
ndx=None, out_ndx='selection.ndx', offset=0)

Build an index file with specified groups and the combined group.

This is not a full blown selection parser a la Charmm, VMD or MDAnalysis but a very quick hack.

Example

How to use the IndexBuilder:

G = gromacs.cbook.IndexBuilder('md_posres.pdb',
['S312:OG','T313:OG1','A38:O','A309:O','@a62549 & r NA'],
offset=-9, out_ndx='selection.ndx')

groupname, ndx = G.combine()
del G

4.5. API documentation 79

http://www.charmm.org/html/documentation/c35b1/select.html
http://www.ks.uiuc.edu/Research/vmd/current/ug/node87.html
http://mdanalysis.org

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

The residue numbers are given with their canonical resids from the sequence or pdb. offset=-9 says
that one calculates Gromacs topology resids by subtracting 9 from the canonical resid.

The combined selection is OR ed by default and written to selection.ndx. One can also add all the
groups in the initial ndx file (or the make_ndx default groups) to the output (see the defaultgroups
keyword for IndexBuilder.combine()).

Generating an index file always requires calling combine() even if there is only a single group.

Deleting the class removes all temporary files associated with it (see IndexBuilder.indexfiles).

Raises
If an empty group is detected (which does not always work) then a gromacs.
BadParameterWarning is issued.

Bugs
If make_ndx crashes with an unexpected error then this is fairly hard to diagnose. For instance,
in certain cases it segmentation faults when a tpr is provided as a struct file and the resulting
error messages becomes

GromacsError: [Errno -11] Gromacs tool failed
Command invocation: make_ndx -o /tmp/tmp_Na1__NK7cT3.ndx -f md_posres.
→˓tpr

In this case run the command invocation manually to see what the problem could be.

See also:

In some cases it might be more straightforward to use gromacs.formats.NDX.

Build a index group from the selection arguments.

If selections and a structure file are supplied then the individual selections are constructed with separate
calls to gromacs.make_ndx(). Use IndexBuilder.combine() to combine them into a joint selection or
IndexBuilder.write() to simply write out the individual named selections (useful with names).

Arguments

struct
[filename] Structure file (tpr, pdb, . . .)

selections
[list] The list must contain strings or tuples, which must be be one of the following constructs:

“<1-letter aa code><resid>[:<atom name]”

Selects the CA of the residue or the specified atom name.

example: "S312:OA" or "A22" (equivalent to "A22:CA")

(“<1-letter aa code><resid>”, “<1-letter aa code><resid>, [“<atom name>”])

Selects a range of residues. If only two residue identifiers are provided then all
atoms are selected. With an optional third atom identifier, only this atom anme is
selected for each residue in the range. [EXPERIMENTAL]

“@<make_ndx selection>”

The @ letter introduces a verbatim make_ndx command. It will apply the given
selection without any further processing or checks.

example: "@a 6234 - 6238" or '@"SOL"' (note the quoting) or "@r SER & r
312 & t OA".

80 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

names
[list] Strings to name the selections; if not supplied or if individuals are None then a de-
fault name is created. When simply using IndexBuilder.write() then these should be
supplied.

name_all
[string] Name of the group that is generated by IndexBuilder.combine().

offset
[int, dict] This number is added to the resids in the first selection scheme; this allows names
to be the same as in a crystal structure. If offset is a dict then it is used to directly look up
the resids.

ndx
[filename or list of filenames] Optional input index file(s).

out_ndx
[filename] Output index file.

combine(name_all=None, out_ndx=None, operation='|', defaultgroups=False)
Combine individual groups into a single one and write output.

Keywords

name_all
[string] Name of the combined group, None generates a name. [None]

out_ndx
[filename] Name of the output file that will contain the individual groups and the combined
group. If None then default from the class constructor is used. [None]

operation
[character] Logical operation that is used to generate the combined group from the indi-
vidual groups: “|” (OR) or “&” (AND); if set to False then no combined group is created
and only the individual groups are written. [“|”]

defaultgroups
[bool] True: append everything to the default groups produced by make_ndx (or rather,
the groups provided in the ndx file on initialization — if this was None then these are truly
default groups); False: only use the generated groups

Returns
(combinedgroup_name, output_ndx), a tuple showing the actual group name and the
name of the file; useful when all names are autogenerated.

Warning: The order of the atom numbers in the combined group is not guaranteed to be the same
as the selections on input because make_ndx sorts them ascending. Thus you should be careful when
using these index files for calculations of angles and dihedrals. Use gromacs.formats.NDX in these
cases.

See also:

IndexBuilder.write().

gmx_resid(resid)
Returns resid in the Gromacs index by transforming with offset.

gromacs.cbook.parse_ndxlist(output)
Parse output from make_ndx to build list of index groups:

4.5. API documentation 81

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

groups = parse_ndxlist(output)

output should be the standard output from make_ndx, e.g.:

rc,output,junk = gromacs.make_ndx(..., input=('', 'q'), stdout=False, stderr=True)

(or simply use

rc,output,junk = cbook.make_ndx_captured(. . .)

which presets input, stdout and stderr; of course input can be overriden.)

Returns
The function returns a list of dicts (groups) with fields

name
name of the groups

nr
number of the group (starts at 0)

natoms
number of atoms in the group

gromacs.cbook.get_ndx_groups(ndx, **kwargs)
Return a list of index groups in the index file ndx.

Arguments

• ndx is a Gromacs index file.

• kwargs are passed to make_ndx_captured().

Returns
list of groups as supplied by parse_ndxlist()

Alternatively, load the index file with gromacs.formats.NDX for full control.

gromacs.cbook.make_ndx_captured(**kwargs)
make_ndx that captures all output

Standard make_ndx() command with the input and output pre-set in such a way that it can be conveniently used
for parse_ndxlist().

Example::
ndx_groups = parse_ndxlist(make_ndx_captured(n=ndx)[0])

Note that the convenient get_ndx_groups() function does exactly that and can probably used in most cases.

Arguments
keywords are passed on to make_ndx()

Returns
(returncode, output, None)

82 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

File editing functions

It is often rather useful to be able to change parts of a template file. For specialized cases the two following functions
are useful:

gromacs.cbook.edit_mdp(mdp, new_mdp=None, extend_parameters=None, **substitutions)
Change values in a Gromacs mdp file.

Parameters and values are supplied as substitutions, eg nsteps=1000.

By default the template mdp file is overwritten in place.

If a parameter does not exist in the template then it cannot be substituted and the parameter/value pair is returned.
The user has to check the returned list in order to make sure that everything worked as expected. At the moment
it is not possible to automatically append the new values to the mdp file because of ambiguities when having to
replace dashes in parameter names with underscores (see the notes below on dashes/underscores).

If a parameter is set to the value None then it will be ignored.

Arguments

mdp
[filename] filename of input (and output filename of new_mdp=None)

new_mdp
[filename] filename of alternative output mdp file [None]

extend_parameters
[string or list of strings] single parameter or list of parameters for which the new values
should be appended to the existing value in the mdp file. This makes mostly sense for a single
parameter, namely ‘include’, which is set as the default. Set to [] to disable. [‘include’]

substitutions
parameter=value pairs, where parameter is defined by the Gromacs mdp file; dashes in pa-
rameter names have to be replaced by underscores. If a value is a list-like object then the
items are written as a sequence, joined with spaces, e.g.

ref_t=[310,310,310] ---> ref_t = 310 310 310

Returns
Dict of parameters that have not been substituted.

Example

edit_mdp('md.mdp', new_mdp='long_md.mdp', nsteps=100000, nstxtcout=1000, lincs_
→˓iter=2)

Note:

• Dashes in Gromacs mdp parameters have to be replaced by an underscore when supplied as python keyword
arguments (a limitation of python). For example the MDP syntax is lincs-iter = 4 but the correspond-
ing keyword would be lincs_iter = 4.

• If the keyword is set as a dict key, eg mdp_params['lincs-iter']=4 then one does not have to substitute.

• Parameters aa_bb and aa-bb are considered the same (although this should not be a problem in practice
because there are no mdp parameters that only differ by a underscore).

• This code is more compact in Perl as one can use s/// operators: s/^(\s*${key}\s*=\s*).*/
1{val}/

4.5. API documentation 83

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

See also:

One can also load the mdp file with gromacs.formats.MDP, edit the object (a dict), and save it again.

gromacs.cbook.edit_txt(filename, substitutions, newname=None)
Primitive text file stream editor.

This function can be used to edit free-form text files such as the topology file. By default it does an in-place edit
of filename. If newname is supplied then the edited file is written to newname.

Arguments

filename
input text file

substitutions
substitution commands (see below for format)

newname
output filename; if None then filename is changed in place [None]

substitutions is a list of triplets; the first two elements are regular expression strings, the last is the substitution
value. It mimics sed search and replace. The rules for substitutions:

substitutions ::= "[" search_replace_tuple, ... "]"
search_replace_tuple ::= "(" line_match_RE "," search_RE "," replacement ")"
line_match_RE ::= regular expression that selects the line (uses match)
search_RE ::= regular expression that is searched in the line
replacement ::= replacement string for search_RE

Running edit_txt() does pretty much what a simple

sed /line_match_RE/s/search_RE/replacement/

with repeated substitution commands does.

Special replacement values: - None: the rule is ignored - False: the line is deleted (even if other rules match)

Note:

• No sanity checks are performed and the substitutions must be supplied exactly as shown.

• All substitutions are applied to a line; thus the order of the substitution commands may matter when one
substitution generates a match for a subsequent rule.

• If replacement is set to None then the whole expression is ignored and whatever is in the template is used.
To unset values you must provided an empty string or similar.

• Delete a matching line if replacement=``False``.

84 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.setup – Setting up a Gromacs MD run

Individual steps such as solvating a structure or energy minimization are set up in individual directories. For energy
minimization one should supply appropriate mdp run input files; otherwise example templates are used.

Warning: You must check all simulation parameters for yourself. Do not rely on any defaults provided here. The
scripts provided here are provided under the assumption that you know what you are doing and you just want to
automate the boring parts of the process.

User functions

The individual steps of setting up a simple MD simulation are broken down in a sequence of functions that depend on
the previous step(s):

topology()
generate initial topology file (limited functionality, might require manual setup)

solvate()
solvate globular protein and add ions to neutralize

energy_minimize()
set up energy minimization and run it (using mdrun_d)

em_schedule()
set up and run multiple energy minimizations one after another (as an alternative to the simple single
energy minimization provided by energy_minimize())

MD_restrained()
set up restrained MD

MD()
set up equilibrium MD

Each function uses its own working directory (set with the dirname keyword argument, but it should be safe and
convenient to use the defaults). Other arguments assume the default locations so typically not much should have to be
set manually.

One can supply non-standard itp files in the topology directory. In some cases one does not use the topology()
function at all but sets up the topology manually. In this case it is safest to call the topology directory top and make
sure that it contains all relevant top, itp, and pdb files.

Example

Run a single protein in a dodecahedral box of SPC water molecules and use the GROMOS96 G43a1 force field. We
start with the structure in protein.pdb:

from gromacs.setup import *
f1 = topology(protein='MyProtein', struct='protein.pdb', ff='G43a1', water='spc',␣
→˓force=True, ignh=True)

Each function returns “interesting” new files in a dictionary in such a away that it can often be used as input for the
next function in the chain (although in most cases one can get away with the defaults of the keyword arguments):

4.5. API documentation 85

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

f2 = solvate(**f1)
f3 = energy_minimize(**f2)

Now prepare input for a MD run with restraints on the protein:

MD_restrained(**f3)

Use the files in the directory to run the simulation locally or on a cluster. You can provide your own template for a
queuing system submission script; see the source code for details.

Once the restraint run has completed, use the last frame as input for the equilibrium MD:

MD(struct='MD_POSRES/md.gro', runtime=1e5)

Run the resulting tpr file on a cluster.

User functions

The following functions are provided for the user:

gromacs.setup.topology(struct=None, protein='protein', top='system.top', dirname='top', posres='posres.itp',
ff='oplsaa', water='tip4p', **pdb2gmx_args)

Build Gromacs topology files from pdb.

Keywords

struct
input structure (required)

protein
name of the output files

top
name of the topology file

dirname
directory in which the new topology will be stored

ff
force field (string understood by pdb2gmx); default “oplsaa”

water
water model (string), default “tip4p”

pdb2gmxargs
other arguments for pdb2gmx

Note: At the moment this function simply runs pdb2gmx and uses the resulting topology file directly. If you
want to create more complicated topologies and maybe also use additional itp files or make a protein itp file then
you will have to do this manually.

gromacs.setup.solvate(struct='top/protein.pdb', top='top/system.top', distance=0.9, boxtype='dodecahedron',
concentration=0, cation='NA', anion='CL', water='tip4p', solvent_name='SOL',
with_membrane=False, ndx='main.ndx', mainselection='"Protein"', dirname='solvate',
**kwargs)

86 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Put protein into box, add water, add counter-ions.

Currently this really only supports solutes in water. If you need to embedd a protein in a membrane then you will
require more sophisticated approaches.

However, you can supply a protein already inserted in a bilayer. In this case you will probably want to set distance
= None and also enable with_membrane = True (using extra big vdw radii for typical lipids).

Note: The defaults are suitable for solvating a globular protein in a fairly tight (increase distance!) dodecahedral
box.

Arguments

struct
[filename] pdb or gro input structure

top
[filename] Gromacs topology

distance
[float] When solvating with water, make the box big enough so that at least distance nm water
are between the solute struct and the box boundary. Set boxtype to None in order to use a
box size in the input file (gro or pdb).

boxtype or bt: string
Any of the box types supported by Editconf (triclinic, cubic, dodecahedron, octahedron).
Set the box dimensions either with distance or the box and angle keywords.

If set to None it will ignore distance and use the box inside the struct file.

bt overrides the value of boxtype.

box
List of three box lengths [A,B,C] that are used by Editconf in combination with boxtype
(bt in editconf) and angles. Setting box overrides distance.

angles
List of three angles (only necessary for triclinic boxes).

concentration
[float] Concentration of the free ions in mol/l. Note that counter ions are added in excess of
this concentration.

cation and anion
[string] Molecule names of the ions. This depends on the chosen force field.

water
[string] Name of the water model; one of “spc”, “spce”, “tip3p”, “tip4p”. This should be
appropriate for the chosen force field. If an alternative solvent is required, simply supply the
path to a box with solvent molecules (used by genbox()’s cs argument) and also supply the
molecule name via solvent_name.

solvent_name
Name of the molecules that make up the solvent (as set in the itp/top). Typically needs to be
changed when using non-standard/non-water solvents. [“SOL”]

with_membrane
[bool] True: use special vdwradii.dat with 0.1 nm-increased radii on lipids. Default is
False.

4.5. API documentation 87

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

ndx
[filename] How to name the index file that is produced by this function.

mainselection
[string] A string that is fed to Make_ndx and which should select the solute.

dirname
[directory name] Name of the directory in which all files for the solvation stage are stored.

includes
List of additional directories to add to the mdp include path

kwargs
Additional arguments are passed on to Editconf or are interpreted as parameters to be
changed in the mdp file.

gromacs.setup.energy_minimize(dirname='em',
mdp='/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/gromacs/templates/em.mdp',
struct='solvate/ionized.gro', top='top/system.top', output='em.pdb',
deffnm='em', mdrunner=None, mdrun_args=None, **kwargs)

Energy minimize the system.

This sets up the system (creates run input files) and also runs mdrun_d. Thus it can take a while.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values.

Keywords

dirname
set up under directory dirname [em]

struct
input structure (gro, pdb, . . .) [solvate/ionized.gro]

output
output structure (will be put under dirname) [em.pdb]

deffnm
default name for mdrun-related files [em]

top
topology file [top/system.top]

mdp
mdp file (or use the template) [templates/em.mdp]

includes
additional directories to search for itp files

mdrunner
gromacs.run.MDrunner instance; by default we just try gromacs.mdrun_d() and
gromacs.mdrun() but a MDrunner instance gives the user the ability to run mpi jobs etc.
[None]

mdrun_args
arguments for mdrunner (as a dict), e.g. {'nt': 2}; empty by default

New in version 0.7.0.

88 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

kwargs
remaining key/value pairs that should be changed in the template mdp file, eg
nstxtcout=250, nstfout=250.

Note: If mdrun_d() is not found, the function falls back to mdrun() instead.

gromacs.setup.em_schedule(**kwargs)
Run multiple energy minimizations one after each other.

Keywords

integrators
list of integrators (from ‘l-bfgs’, ‘cg’, ‘steep’) [[‘bfgs’, ‘steep’]]

nsteps
list of maximum number of steps; one for each integrator in in the integrators list [[100,1000]]

kwargs
mostly passed to gromacs.setup.energy_minimize()

Returns
dictionary with paths to final structure (‘struct’) and other files

Example
Conduct three minimizations:

1. low memory Broyden-Goldfarb-Fletcher-Shannon (BFGS) for 30 steps

2. steepest descent for 200 steps

3. finish with BFGS for another 30 steps

We also do a multi-processor minimization when possible (i.e. for steep (and conjugate gradient)
by using a gromacs.run.MDrunner class for a mdrun executable compiled for OpenMP in 64
bit (see gromacs.run for details):

import gromacs.run
gromacs.setup.em_schedule(struct='solvate/ionized.gro',

mdrunner=gromacs.run.MDrunnerOpenMP64,
integrators=['l-bfgs', 'steep', 'l-bfgs'],
nsteps=[50,200, 50])

Note: You might have to prepare the mdp file carefully because at the moment one can only modify the nsteps
parameter on a per-minimizer basis.

gromacs.setup.MD_restrained(dirname='MD_POSRES', **kwargs)
Set up MD with position restraints.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values. Note that setting mainselection = None will
disable many of the automated choices and is often recommended when using your own mdp file.

Keywords

dirname
set up under directory dirname [MD_POSRES]

4.5. API documentation 89

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

struct
input structure (gro, pdb, . . .) [em/em.pdb]

top
topology file [top/system.top]

mdp
mdp file (or use the template) [templates/md.mdp]

ndx
index file (supply when using a custom mdp)

includes
additional directories to search for itp files

mainselection
make_ndx selection to select main group [“Protein”] (If None then no canonical index file
is generated and it is the user’s responsibility to set tc_grps, tau_t, and ref_t as keyword
arguments, or provide the mdp template with all parameter pre-set in mdp and probably also
your own ndx index file.)

deffnm
default filename for Gromacs run [md]

runtime
total length of the simulation in ps [1000]

dt
integration time step in ps [0.002]

qscript
script to submit to the queuing system; by default uses the template gromacs.config.
qscript_template, which can be manually set to another template from gromacs.
config.templates; can also be a list of template names.

qname
name to be used for the job in the queuing system [PR_GMX]

mdrun_opts
option flags for the mdrun command in the queuing system scripts such as “-stepout 100”.
[“”]

kwargs
remaining key/value pairs that should be changed in the template mdp file, eg
nstxtcout=250, nstfout=250 or command line options for grompp` such as
``maxwarn=1.

In particular one can also set define and activate whichever position restraints have been
coded into the itp and top file. For instance one could have

define = “-DPOSRES_MainChain -DPOSRES_LIGAND”

if these preprocessor constructs exist. Note that there must not be any space between “-D”
and the value.

By default define is set to “-DPOSRES”.

Returns
a dict that can be fed into gromacs.setup.MD() (but check, just in case, especially if you want
to change the define parameter in the mdp file)

90 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Note: The output frequency is drastically reduced for position restraint runs by default. Set the corresponding
nst* variables if you require more output. The pressure coupling option refcoord_scaling is set to “com” by
default (but can be changed via kwargs) and the pressure coupling algorithm itself is set to Pcoupl = “Berendsen”
to run a stable simulation.

gromacs.setup.MD(dirname='MD', **kwargs)
Set up equilibrium MD.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values. Note that setting mainselection = None will
disable many of the automated choices and is often recommended when using your own mdp file.

Keywords

dirname
set up under directory dirname [MD]

struct
input structure (gro, pdb, . . .) [MD_POSRES/md_posres.pdb]

top
topology file [top/system.top]

mdp
mdp file (or use the template) [templates/md.mdp]

ndx
index file (supply when using a custom mdp)

includes
additional directories to search for itp files

mainselection
make_ndx selection to select main group [“Protein”] (If None then no canonical index file
is generated and it is the user’s responsibility to set tc_grps, tau_t, and ref_t as keyword
arguments, or provide the mdp template with all parameter pre-set in mdp and probably also
your own ndx index file.)

deffnm
default filename for Gromacs run [md]

runtime
total length of the simulation in ps [1000]

dt
integration time step in ps [0.002]

qscript
script to submit to the queuing system; by default uses the template gromacs.config.
qscript_template, which can be manually set to another template from gromacs.
config.templates; can also be a list of template names.

qname
name to be used for the job in the queuing system [MD_GMX]

mdrun_opts
option flags for the mdrun command in the queuing system scripts such as “-stepout 100
-dgdl”. [“”]

4.5. API documentation 91

http://manual.gromacs.org/online/mdp_opt.html#pc

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

kwargs
remaining key/value pairs that should be changed in the template mdp file, e.g.
nstxtcout=250, nstfout=250 or command line options for :program`grompp` such as
maxwarn=1.

Returns
a dict that can be fed into gromacs.setup.MD() (but check, just in case, especially if you want
to change the define parameter in the mdp file)

Helper functions

The following functions are used under the hood and are mainly useful when writing extensions to the module.

gromacs.setup.make_main_index(struct, selection='"Protein"', ndx='main.ndx', oldndx=None)
Make index file with the special groups.

This routine adds the group __main__ and the group __environment__ to the end of the index file. __main__ con-
tains what the user defines as the central and most important parts of the system. __environment__ is everything
else.

The template mdp file, for instance, uses these two groups for T-coupling.

These groups are mainly useful if the default groups “Protein” and “Non-Protein” are not appropriate. By using
symbolic names such as __main__ one can keep scripts more general.

Returns
groups is a list of dictionaries that describe the index groups. See gromacs.cbook.
parse_ndxlist() for details.

Arguments

struct
[filename] structure (tpr, pdb, gro)

selection
[string] is a make_ndx command such as "Protein" or r DRG which determines what is
considered the main group for centering etc. It is passed directly to make_ndx.

ndx
[string] name of the final index file

oldndx
[string] name of index file that should be used as a basis; if None then the make_ndx default
groups are used.

This routine is very dumb at the moment; maybe some heuristics will be added later as could be other symbolic
groups such as __membrane__.

gromacs.setup.check_mdpargs(d)
Check if any arguments remain in dict d.

gromacs.setup.get_lipid_vdwradii(outdir='.', libdir=None)
Find vdwradii.dat and add special entries for lipids.

See gromacs.setup.vdw_lipid_resnames for lipid resnames. Add more if necessary.

92 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.setup._setup_MD(dirname, deffnm='md',
mdp='/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/gromacs/templates/md_OPLSAA.mdp',
struct=None, top='top/system.top', ndx=None, mainselection='"Protein"',
qscript='/home/docs/checkouts/readthedocs.org/user_builds/gromacswrapper/checkouts/latest/gromacs/templates/local.sh',
qname=None, startdir=None, mdrun_opts='', budget=None,
walltime=0.3333333333333333, dt=0.002, runtime=1000.0, **mdp_kwargs)

Generic function to set up a mdrun MD simulation.

See the user functions for usage.

Defined constants:

gromacs.setup.CONC_WATER = 55.345

Concentration of water at standard conditions in mol/L. Density at 25 degrees C and 1 atmosphere pressure: rho
= 997.0480 g/L. Molecular weight: M = 18.015 g/mol. c = n/V = m/(V*M) = rho/M = 55.345 mol/L.

gromacs.setup.vdw_lipid_resnames = ['POPC', 'POPE', 'POPG', 'DOPC', 'DPPC', 'DLPC',
'DMPC', 'DPPG']

Hard-coded lipid residue names for a vdwradii.dat file. Use together with vdw_lipid_atom_radii in
get_lipid_vdwradii().

gromacs.setup.vdw_lipid_atom_radii = {'C': 0.25, 'H': 0.09, 'N': 0.16, 'O': 0.155}

Increased atom radii for lipid atoms; these are simply the standard values from GMXLIB/vdwradii.dat in-
creased by 0.1 nm (C) or 0.05 nm (N, O, H).

gromacs.scaling – Partial tempering

Author
Jan Domanski, @jandom

New in version 0.5.0.

Helper functions for scaling gromacs topologies; useful for setting up simulations with Hamiltonian replicate exchange
and partial tempering (REST2).

gromacs.scaling.scale_dihedrals(mol, dihedrals, scale, banned_lines=None)
Scale dihedral angles

gromacs.scaling.scale_impropers(mol, impropers, scale, banned_lines=None)
Scale improper dihedrals

gromacs.scaling.partial_tempering(topfile='processed.top', outfile='scaled.top', banned_lines='',
scale_lipids=1.0, scale_protein=1.0)

Set up topology for partial tempering (REST2) replica exchange.

Changed in version 0.7.0: Use keyword arguments instead of an args Namespace object.

4.5. API documentation 93

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.qsub – utilities for batch submission systems

The module helps writing submission scripts for various batch submission queuing systems. The known ones are listed
stored as QueuingSystem instances in queuing_systems; append new ones to this list.

The working paradigm is that template scripts are provided (see gromacs.config.templates) and only a few place
holders are substituted (using gromacs.cbook.edit_txt()).

User-supplied template scripts can be stored in gromacs.config.qscriptdir (by default ~/.gromacswrapper/
qscripts) and they will be picked up before the package-supplied ones.

At the moment, some of the functions in gromacs.setup use this module but it is fairly independent and could con-
ceivably be used for a wider range of projects.

Queuing system templates

The queuing system scripts are highly specific and you will need to add your own. Templates should be shell scripts.
Some parts of the templates are modified by the generate_submit_scripts() function. The “place holders” that
can be replaced are shown in the table below. Typically, the place holders are either shell variable assignments or batch
submission system commands. The table shows SGE commands but PBS and LoadLeveler have similar constructs;
e.g. PBS commands start with #PBS and LoadLeveller uses #@ with its own command keywords).

Table 2: Substitutions in queuing system templates.

place holder default replacement description regex
#$ -N GMX_MD sgename job name /^#.*(-N|job_name)/
#$ -l walltime= 00:20:00 walltime max run time /^#.*(-l walltime|wall_clock_limit)/
#$ -A BUDGET budget account /^#.*(-A|account_no)/
DEFFNM= md deffnm default gmx name /^ *DEFFNM=/
STARTDIR= . startdir remote jobdir /^ *STARTDIR=/
WALL_HOURS= 0.33 walltime h mdrun’s -maxh /^ *WALL_HOURS=/
NPME= npme PME nodes /^ *NPME=/
MDRUN_OPTS= “” mdrun_opts more options /^ *MDRUN_OPTS=/

Lines with place holders should not have any white space at the beginning. The regular expression pattern (“regex”) is
used to find the lines for the replacement and the literal default values (“default”) are replaced. (Exception: any value
that follows an equals sign “=” is replaced, regardless of the default value in the table except for MDRUN_OPTS where
only “” will be replace.) Not all place holders have to occur in a template; for instance, if a queue has no run time
limitation then one would probably not include walltime and WALL_HOURS place holders.

The line # JOB_ARRAY_PLACEHOLDER can be replaced by generate_submit_array() to produce a “job array” (also
known as a “task array”) script that runs a large number of related simulations under the control of a single queuing
system job. The individual array tasks are run from different sub directories. Only queuing system scripts that are using
the bash shell are supported for job arrays at the moment.

A queuing system script must have the appropriate suffix to be properly recognized, as shown in the table below.

94 Chapter 4. Contact

http://www.mcs.anl.gov/research/projects/openpbs/
http://www-03.ibm.com/systems/software/loadleveler/index.html

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Table 3: Suffices for queuing system templates. Pure shell-scripts are
only used to run locally.

Queuing system suffix notes
Sun Gridengine .sge Sun’s Sun Gridengine
Portable Batch queuing system .pbs OpenPBS and PBS Pro
LoadLeveler .ll IBM’s LoadLeveler
bash script .bash, .sh Advanced bash scripting
csh script .csh avoid csh

Example queuing system script template for PBS

The following script is a usable PBS script for a super computer. It contains almost all of the replacement tokens listed
in the table (indicated by ++++++).

#!/bin/bash
File name: ~/.gromacswrapper/qscripts/supercomputer.somewhere.fr_64core.pbs
#PBS -N GMX_MD
++++++
#PBS -j oe
#PBS -l select=8:ncpus=8:mpiprocs=8
#PBS -l walltime=00:20:00
++++++++

host: supercomputer.somewhere.fr
queuing system: PBS

set this to the same value as walltime; mdrun will stop cleanly
at 0.99 * WALL_HOURS
WALL_HOURS=0.33
++++

deffnm line is possibly modified by gromacs.setup
(leave it as it is in the template)
DEFFNM=md
++

TPR=${DEFFNM}.tpr
OUTPUT=${DEFFNM}.out
PDB=${DEFFNM}.pdb

MDRUN_OPTS=""
++

If you always want to add additional MDRUN options in this script then
you can either do this directly in the mdrun commandline below or by
constructs such as the following:
MDRUN_OPTS="-npme 24 $MDRUN_OPTS"

JOB_ARRAY_PLACEHOLDER
#++++++++++++++++++++++ leave the full commented line intact!

(continues on next page)

4.5. API documentation 95

http://gridengine.sunsource.net/
http://www.mcs.anl.gov/research/projects/openpbs/
http://www.pbsworks.com/Product.aspx?id=1
http://www-03.ibm.com/systems/software/loadleveler/index.html
http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/CshTop10.txt
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://www.mcs.anl.gov/research/projects/openpbs/

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

(continued from previous page)

avoids some failures
export MPI_GROUP_MAX=1024
use hard coded path for time being
GMXBIN="/opt/software/SGI/gromacs/4.0.3/bin"
MPIRUN=/usr/pbs/bin/mpiexec
APPLICATION=$GMXBIN/mdrun_mpi

$MPIRUN $APPLICATION -stepout 1000 -deffnm ${DEFFNM} -s ${TPR} -c ${PDB} -cpi ␣
→˓ $MDRUN_OPTS -maxh ${WALL_HOURS} > $OUTPUT
rc=$?

dependent jobs will only start if rc == 0
exit $rc

Save the above script in ~/.gromacswrapper/qscripts under the name supercomputer.somewhere.
fr_64core.pbs. This will make the script immediately usable. For example, in order to set up a production MD
run with gromacs.setup.MD() for this super computer one would use

gromacs.setup.MD(..., qscripts=['supercomputer.somewhere.fr_64core.pbs', 'local.sh'])

This will generate submission scripts based on supercomputer.somewhere.fr_64core.pbs and also the default
local.sh that is provided with GromacsWrapper.

In order to modify MDRUN_OPTS one would use the additonal mdrun_opts argument, for instance:

gromacs.setup.MD(..., qscripts=['supercomputer.somewhere.fr_64core.pbs', 'local.sh'],
mdrun_opts="-v -npme 20 -dlb yes -nosum")

Currently there is no good way to specify the number of processors when creating run scripts. You will need to provide
scripts with different numbers of cores hard coded or set them when submitting the scripts with command line options
to qsub.

Classes and functions

class gromacs.qsub.QueuingSystem(name, suffix, qsub_prefix, array_variable=None, array_option=None)
Class that represents minimum information about a batch submission system.

Define a queuing system’s functionality

Arguments

name
name of the queuing system, e.g. ‘Sun Gridengine’

suffix
suffix of input files, e.g. ‘sge’

qsub_prefix
prefix string that starts a qsub flag in a script, e.g. ‘#$’

Keywords

array_variable
environment variable exported for array jobs, e.g. ‘SGE_TASK_ID’

96 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

array_option
qsub option format string to launch an array (e.g. ‘-t %d-%d’)

array(directories)
Return multiline string for simple array jobs over directories.

Warning: The string is in bash and hence the template must also be bash (and not csh or sh).

array_flag(directories)
Return string to embed the array launching option in the script.

flag(*args)
Return string for qsub flag args prefixed with appropriate inscript prefix.

has_arrays()

True if known how to do job arrays.

isMine(scriptname)
Primitive queuing system detection; only looks at suffix at the moment.

gromacs.qsub.generate_submit_scripts(templates, prefix=None, deffnm='md', jobname='MD',
budget=None, mdrun_opts=None, walltime=1.0,
jobarray_string=None, startdir=None, npme=None, **kwargs)

Write scripts for queuing systems.

This sets up queuing system run scripts with a simple search and replace in templates. See gromacs.cbook.
edit_txt() for details. Shell scripts are made executable.

Arguments

templates
Template file or list of template files. The “files” can also be names or symbolic names for
templates in the templates directory. See gromacs.config for details and rules for writing
templates.

prefix
Prefix for the final run script filename; by default the filename will be the same as the tem-
plate. [None]

dirname
Directory in which to place the submit scripts. [.]

deffnm
Default filename prefix for mdrun -deffnm [md]

jobname
Name of the job in the queuing system. [MD]

budget
Which budget to book the runtime on [None]

startdir
Explicit path on the remote system (for run scripts that need to cd into this directory at the
beginning of execution) [None]

mdrun_opts
String of additional options for mdrun.

4.5. API documentation 97

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

walltime
Maximum runtime of the job in hours. [1]

npme
number of PME nodes

jobarray_string
Multi-line string that is spliced in for job array functionality (see gromacs.qsub.
generate_submit_array(); do not use manually)

kwargs
all other kwargs are ignored

Returns
list of generated run scripts

gromacs.qsub.generate_submit_array(templates, directories, **kwargs)
Generate a array job.

For each work_dir in directories, the array job will

1. cd into work_dir

2. run the job as detailed in the template

It will use all the queuing system directives found in the template. If more complicated set ups are required, then
this function cannot be used.

Arguments

templates
Basic template for a single job; the job array logic is spliced into the position of the line

JOB_ARRAY_PLACEHOLDER

The appropriate commands for common queuing systems (Sun Gridengine, PBS) are hard
coded here. The queuing system is detected from the suffix of the template.

directories
List of directories under dirname. One task is set up for each directory.

dirname
The array script will be placed in this directory. The directories must be located under
dirname.

kwargs
See gromacs.setup.generate_submit_script() for details.

gromacs.qsub.detect_queuing_system(scriptfile)
Return the queuing system for which scriptfile was written.

gromacs.qsub.queuing_systems = [<Sun Gridengine QueuingSystem instance>, <PBS
QueuingSystem instance>, <LoadLeveler QueuingSystem instance>, <Slurm QueuingSystem
instance>]

Pre-defined queuing systems (SGE, PBS). Add your own here.

98 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.run – Running simulations

The gromacs.run module contains tools for launching a Gromacs MD simulation with gmx mdrun. The basic tool
is the MDrunner class that customizes how mdrun is actually called. It enables setting a driver such as mpiexec for
launching MPI-enabled runs. The Example: How to create your own MDrunner with mpiexec -n should make clearer
what one needs to do.

Additionally, Helper functions are provided to check and manage MD runs.

Example: How to create your own MDrunner with mpiexec -n

• Question: How do I change the GromacsWrapper configuration file so that mdrun gets called with an mpiexec
-n prefix?

• Answer: That’s not directly supported but if you just want to change how mdrun is launched then you can create
a custom MDrunner for this purpose.

In many cases, you really only need the path to mpiexec and then you can just derive your own class MDrunnerMPI:

import gromacs.run
class MDrunnerMPI(gromacs.run.MDrunner):

"""Manage running :program:`mdrun` as an MPI multiprocessor job."""

mdrun = "gmx_mpi mdrun"
mpiexec = "/opt/local/bin/mpiexec"

The full path to the MPI runner mpiexec (or mpirun) is stored in the class attribute MDrunnerMPI.mpiexec.

This class can then be used as

mdrun_mpi = MDrunnerMPI(s="md.tpr", deffnm="md")
rc = mdrun_mpi.run(ncores=16)

Our MDrunnerMPI only supports running mpiexec -n ncores gmx mdrun ..., i.e., only the -n ncores ar-
guments for mpiexec is supported. If you need more functionality then you need write your own MDrunner.
mpicommand() method, which you would add to your own MDrunnerMPI class.

The included MDrunnerOpenMP could be used instead of our own MDrunnerMPI; the only difference is that multiple
names of MPI-enabled mdrun binaries are stored as a tuple in the attribute MDrunnerOpenMP.mdrun so that the class
works for old Gromacs 4.x and modern Gromacs 2016.

If you need to run some code before or after launching you can add it as the MDrunnerMPI.prehook() and
MDrunnerMPI.posthook() methods as shown in MDrunnerMpich2Smpd .

MDrunner

The MDrunner wraps gromacs.tools.Mdrun to customize launching a Gromacs MD simulation from inside the
Python interpreter.

class gromacs.run.MDrunner(dirname='.', **kwargs)
A class to manage running mdrun in various ways.

In order to do complicated multiprocessor runs with mpiexec or similar you need to derive from this class and
override

• MDrunner.mdrun with the path to the mdrun executable

4.5. API documentation 99

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

• MDrunner.mpiexec with the path to the MPI launcher

• MDrunner.mpicommand() with a function that returns the mpi command as a list

In addition there are two methods named prehook() and posthook() that are called right before and after the
process is started. If they are overriden appropriately then they can be used to set up a mpi environment.

The run() method can take arguments for the mpiexec launcher but it can also be used to supersede the argu-
ments for mdrun.

The actual mdrun command is set in the class-level attribute mdrun. This can be a single string or a se-
quence (tuple) of strings. On instantiation, the first entry in mdrun that can be found on the PATH is chosen
(with find_gromacs_command()). For example, gmx mdrun from Gromacs 5.x but just mdrun for Gromacs
4.6.x. Similarly, alternative executables (such as double precision) need to be specified here (e.g. ("mdrun_d",
"gmx_d mdrun")).

Note: Changing mdrun arguments permanently changes the default arguments for this instance of MDrunner.
(This is arguably a bug.)

Changed in version 0.5.1: Added detection of bare Gromacs commands (Gromacs 4.6.x) or commands run
through gmx (Gromacs 5.x).

Changed in version 0.6.0: Changed syntax for Gromacs 5.x commands.

Set up a simple run with mdrun.

Keywords

dirname
Change to this directory before launching the job. Input files must be supplied relative to this
directory.

keywords
All other keword arguments are used to construct the mdrun commandline. Note that only
keyword arguments are allowed.

check_success()

Check if mdrun finished successfully.

(See check_mdrun_success() for details)

commandline(**mpiargs)
Returns simple command line to invoke mdrun.

If mpiexec is set then mpicommand() provides the mpi launcher command that prefixes the actual mdrun
invocation:

mpiexec [mpiargs] mdrun [mdrun-args]

The mdrun-args are set on initializing the class. Override mpicommand() to fit your system if the simple
default OpenMP launcher is not appropriate.

mdrun = ('mdrun', 'gmx mdrun')

Path to the mdrun executable (or the name if it can be found on PATH); this can be a tuple and then the
program names are tried in sequence. For Gromacs 5 prefix with the driver command, e.g., gmx mdrun.

New in version 0.5.1.

mpicommand(*args, **kwargs)
Return a list of the mpi command portion of the commandline.

100 Chapter 4. Contact

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Only allows primitive mpi at the moment:
mpiexec -n ncores mdrun mdrun-args

(This is a primitive example for OpenMP. Override it for more complicated cases.)

mpiexec = None

path to the MPI launcher (e.g. mpiexec)

posthook(**kwargs)
Called directly after the process terminated (also if it failed).

prehook(**kwargs)
Called directly before launching the process.

run(pre=None, post=None, mdrunargs=None, **mpiargs)
Execute the mdrun command (possibly as a MPI command) and run the simulation.

Keywords

pre
a dictionary containing keyword arguments for the prehook()

post
a dictionary containing keyword arguments for the posthook()

mdrunargs
a dictionary with keyword arguments for mdrun which supersede and update the defaults
given to the class constructor

mpiargs
all other keyword arguments that are processed by mpicommand()

run_check(**kwargs)
Run mdrun and check if run completed when it finishes.

This works by looking at the mdrun log file for ‘Finished mdrun on node’. It is useful to implement robust
simulation techniques.

Arguments
kwargs are keyword arguments that are passed on to run() (typically used for mpi things)

Returns

• True if run completed successfully

• False otherwise

signal_handler(signum, frame)
Custom signal handler for SIGINT.

class gromacs.run.MDrunnerDoublePrecision(dirname='.', **kwargs)
Manage running mdrun_d.

Set up a simple run with mdrun.

Keywords

dirname
Change to this directory before launching the job. Input files must be supplied relative to this
directory.

keywords
All other keword arguments are used to construct the mdrun commandline. Note that only
keyword arguments are allowed.

4.5. API documentation 101

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Example implementations

class gromacs.run.MDrunnerOpenMP(dirname='.', **kwargs)
Manage running mdrun as an OpenMP multiprocessor job.

Set up a simple run with mdrun.

Keywords

dirname
Change to this directory before launching the job. Input files must be supplied relative to this
directory.

keywords
All other keword arguments are used to construct the mdrun commandline. Note that only
keyword arguments are allowed.

mdrun = ('mdrun_openmp', 'gmx_openmp mdrun')

Path to the mdrun executable (or the name if it can be found on PATH); this can be a tuple and then the
program names are tried in sequence. For Gromacs 5 prefix with the driver command, e.g., gmx mdrun.

New in version 0.5.1.

mpiexec = 'mpiexec'

path to the MPI launcher (e.g. mpiexec)

class gromacs.run.MDrunnerMpich2Smpd(dirname='.', **kwargs)
Manage running mdrun as mpich2 multiprocessor job with the SMPD mechanism.

Set up a simple run with mdrun.

Keywords

dirname
Change to this directory before launching the job. Input files must be supplied relative to this
directory.

keywords
All other keword arguments are used to construct the mdrun commandline. Note that only
keyword arguments are allowed.

mdrun = 'mdrun_mpich2'

Path to the mdrun executable (or the name if it can be found on PATH); this can be a tuple and then the
program names are tried in sequence. For Gromacs 5 prefix with the driver command, e.g., gmx mdrun.

New in version 0.5.1.

mpiexec = 'mpiexec'

path to the MPI launcher (e.g. mpiexec)

posthook(**kwargs)
Shut down smpd

prehook(**kwargs)
Launch local smpd.

102 Chapter 4. Contact

http://openmp.org/wp/
http://www.mcs.anl.gov/research/projects/mpich2/

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

Helper functions

gromacs.run.check_mdrun_success(logfile)
Check if mdrun finished successfully.

Analyses the output from mdrun in logfile. Right now we are simply looking for the line “Finished mdrun on
node” in the last 1kb of the file. (The file must be seeakable.)

Arguments

logfile
[filename] Logfile produced by mdrun.

Returns
True if all ok, False if not finished, and None if the logfile cannot be opened

gromacs.run.get_double_or_single_prec_mdrun()

Return double precision mdrun or fall back to single precision.

This convenience function tries gromacs.mdrun_d() first and if it cannot run it, falls back to gromacs.mdrun()
(without further checking).

New in version 0.5.1.

gromacs.run.find_gromacs_command(commands)
Return driver and name of the first command that can be found on PATH

4.6 Alternatives to GromacsWrapper

GromacsWrapper is simplistic; in particular it does not directly link to the GROMACS libraries but relies on Python
wrappers to call GROMACS tools. Some people find this very crude (the author included). Other people have given
more thought to the problem and you are encouraged to see if their efforts speed up your work more than does Gro-
macsWrapper.

gmxapi (M.E. Irrgang, J.M. Hays, and P.M. Kasson)
gmxapi provides interfaces for managing and extending molecular dynamics simulation workflows. In this repos-
itory, a Python package provides the gmxmodule for high-level interaction with GROMACS. gmx.core provides
Python bindings to the gmxapi C++ GROMACS external API.

Irrgang, M. E., Hays, J. M., & Kasson, P. M. gmxapi: a high-level interface for advanced control and extension
of molecular dynamics simulations. Bioinformatics 2018. DOI: 10.1093/bioinformatics/bty484

gromacs_py (Samuel Murail, Maxence Delaunay, Damien Espana)
Gromacs_py is a Python library allowing a simplified use of the Gromacs MD simulation software. Gromacs_py
can build a system topologie based on a pdb file, create the simulation system (pbc box, adding water and ions)
and run minimisation, equilibration and production runs. One of the main objective of the Gromacs_py wrapper
is to automatize routine operations for MD simulation of multiple systems.

MDAnalysis (N. Michaud-Agrawal, E. J. Dennning, and O. Beckstein)
Reads various trajectories (dcd, xtc, trr) and makes coordinates available as numpy arrays. It also has a fairly
sophisticated selection language, similar to Charmm or VMD.

ParmEd
A general tool for working with topology files for all the popular MD codes, including the parmed.gromacs
module for ITP and TOP files.

pymacs (Daniel Seeliger)
pymacs is a python module for dealing with structure files and trajectory data from the GROMACS molecular

4.6. Alternatives to GromacsWrapper 103

http://www.gromacs.org
https://github.com/kassonlab/gmxapi
https://doi.org/10.1093/bioinformatics/bty484
https://github.com/samuelmurail/gromacs_py
http://mdanalysis.org
http://numpy.scipy.org
http://www.charmm.org
http://www.ks.uiuc.edu/Research/vmd/
http://parmed.github.io/ParmEd/html/index.html
http://parmed.github.io/ParmEd/html/api/parmed/parmed.gromacs.html
http://wwwuser.gwdg.de/~dseelig/pymacs.html

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

dynamics package. It has interfaces to some gromacs functions and uses gromacs routines for command line
parsing, reading and writing of structure files (pdb,gro,. . .) and for reading trajectory data (only xtc at the mo-
ment). It is quite useful to write python scripts for simulation setup and analysis that can be combined with other
powerful python packages like numpy, scipy or plotting libraries like pylab. It has an intuitive data structure
(Model –> Chain –> Molecule –> Atom) and allows modifications at all levels like

• Changing of atom, residue and chain properties (name, coordinate, b-factor,. . .

• Deleting and inserting atoms, residues, chains

• Straightforward selection of structure subsets

• Structure building from sequence

• Handling gromacs index files

gmxscript (Pedro Lacerda)
gmxscript is a framework for GROMACS simulations. Its main goal is make simulation protocols easily repro-
ducible and to define canonical steps to perform and analyze a simulation. The commands are stored in very
readable and structured Python file that requires no programming knowledge except syntax.

GROMACS XTC Library
Version 1.1 of the separate xtc/trr library contains example code to access a GROMACS trajectory from python.
It appears to be based on grompy (also see below).

various implementations of python wrappers
See the discussion on the gmx-developers mailinglist: check the thread [gmx-developers] Python interface for
Gromacs

grompy (René Pool, Martin Hoefling, Roland Schulz)
uses ctypes to wrap libgmx:

“Here’s a bunch of code I wrote to wrap libgmx with ctypes and make use of parts of gromacs func-
tionality. My application for this was the processing of a trajectories using gromac’s pbc removal and
fitting routines as well as reading in index groups etc. It’s very incomplete atm and also focused on
wrapping libgmx with all gromacs types and definitions. . .

. . . so python here feels a bit like lightweight c-code glueing together gromacs library functions :-)

The attached code lacks a bit of documentation, but I included a test.py as an example using it.”

Roland Schulz added code:

“I added a little bit wrapper code to easily access the atom information in tpx. I attached the version.
It is backward compatible . . . ”

A working grompy tar ball (with Roland’s enhancements) is cached at gmane.org and the latest sources are hosted
at https://github.com/GromPy

LOOS (Grossfield lab at the University of Rochester)
The idea behind LOOS (Lightweight Object-Oriented Structure library) is to provide a lightweight C++ library
for analysis of molecular dynamics simulations. This includes parsing a number of PDB variants, as well as
the native system description and trajectory formats for CHARMM, NAMD, and Amber. LOOS is not intended
to be an all-encompassing library and it is primarily geared towards reading data in and processing rather than
manipulating the files and structures and writing them out.

The LOOS documentation is well written and comprehensive and the code is published under the GPL.

copernicus
Copernicus is a Python-based client-server network that allows running of large and complicated MD simulation
workflows. It supports GROMACS (grompp and mdrun).

104 Chapter 4. Contact

https://github.com/pslacerda/gmx
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003179.html
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003179.html
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html
http://docs.python.org/library/ctypes.html
http://article.gmane.org/gmane.science.biology.gromacs.devel/1185
https://github.com/GromPy
http://loos.sourceforge.net
http://membrane.urmc.rochester.edu/Grossfield_Lab/Welcome.html
http://loos.sourceforge.net/Docs/
http://www.gnu.org/licenses/
http://git.copernicus-computing.org/
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

VMD (Schulten lab at UIUC)
VMD is a great analysis tool; the only downside is that (at the moment) trajectories have to fit into memory. In
some cases this can be circumvented by reading a trajectory frame by frame using the bigdcd script (which might
also work for GROMACS xtcs).

JGromacs (Márton Münz and Philip C Biggin)
JGromacs is a Java library designed to facilitate the development of cross-platform analysis applications for
Molecular Dynamics (MD) simulations. The package contains parsers for file formats applied by GROMACS.
It provides a multilevel object-oriented representation of simulation data to integrate and interconvert sequence,
structure and dynamics information. In addititon, a basic analysis toolkit is included in the package. The pro-
grammer is also provided with simple tools (e.g. XML-based configuration) to create applications with a user
interface resembling the command-line UI of GROMACS applications.

Please open an issue in the issue tracker to let us know of other efforts so that they can be added here. Thanks.

4.6. Alternatives to GromacsWrapper 105

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/
http://www.ks.uiuc.edu/Research/vmd/script_library/scripts/bigdcd/
http://sbcb.bioch.ox.ac.uk/jgromacs/
https://github.com/Becksteinlab/GromacsWrapper/issues

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

106 Chapter 4. Contact

BIBLIOGRAPHY

[FrenkelSmit2002] D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press, San Diego 2002

107

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

108 Bibliography

PYTHON MODULE INDEX

g
gromacs, 12
gromacs.cbook, 68
gromacs.collections, 56
gromacs.config, 23
gromacs.core, 17
gromacs.environment, 30
gromacs.fileformats.blocks, 48
gromacs.fileformats.convert, 50
gromacs.fileformats.mdp, 44
gromacs.fileformats.ndx, 45
gromacs.fileformats.top, 47
gromacs.fileformats.xpm, 42
gromacs.fileformats.xvg, 32
gromacs.qsub, 94
gromacs.run, 99
gromacs.scaling, 93
gromacs.setup, 85
gromacs.tools, 56
gromacs.utilities, 51

109

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

110 Python Module Index

INDEX

Symbols
$HOME, 54
__call__() (gromacs.core.Command method), 21
__version__ (in module gromacs), 14
_setup_MD() (in module gromacs.setup), 92

A
activate_subplot() (in module gromacs.utilities), 55
active (gromacs.fileformats.convert.Autoconverter at-

tribute), 51
active (gromacs.fileformats.convert.Autoconverter

property), 51
add_mdp_includes() (in module gromacs.cbook), 78
all_frames (gromacs.cbook.Frames property), 71
amino_acid_codes (in module gromacs.utilities), 56
AngleType (class in gromacs.fileformats.blocks), 49
anumb_to_atom() (gro-

macs.fileformats.blocks.Molecule method),
48

anyopen() (in module gromacs.utilities), 53
array (gromacs.fileformats.xpm.XPM property), 43
array (gromacs.fileformats.xvg.XVG property), 36
array() (gromacs.qsub.QueuingSystem method), 97
array_flag() (gromacs.qsub.QueuingSystem method),

97
asiterable() (in module gromacs.utilities), 54
assemble_topology() (gro-

macs.fileformats.top.SystemToGroTop method),
47

Atom (class in gromacs.fileformats.blocks), 48
AtomType (class in gromacs.fileformats.blocks), 49
AttributeDict (class in gromacs.utilities), 53
autoconvert() (in module gromacs.utilities), 55
Autoconverter (class in gromacs.fileformats.convert),

50
Autoconverter.convert() (in module gro-

macs.fileformats.convert), 51
AutoCorrectionWarning, 14

B
BadParameterWarning, 14
besttype() (in module gromacs.fileformats.convert), 51

BondType (class in gromacs.fileformats.blocks), 49
break_array() (in module gromacs.fileformats.xvg), 42

C
cat() (in module gromacs.cbook), 69
center_fit() (gromacs.cbook.Transformer method), 72
cfg (in module gromacs.config), 25
check_file_exists() (gromacs.utilities.FileUtils

method), 52
check_mdpargs() (in module gromacs.setup), 92
check_mdrun_success() (in module gromacs.run), 103
check_setup() (in module gromacs.config), 24
check_success() (gromacs.run.MDrunner method),

100
cleanup() (gromacs.cbook.Frames method), 71
CMapType (class in gromacs.fileformats.blocks), 49
col() (gromacs.fileformats.xpm.XPM method), 43
Collection (class in gromacs.collections), 56
COLOUR (gromacs.fileformats.xpm.XPM attribute), 43
combine() (gromacs.cbook.IndexBuilder method), 81
Command (class in gromacs.core), 21
command_name (gromacs.core.Command attribute), 22
command_name (gromacs.core.GromacsCommand

attribute), 20
commandline() (gromacs.core.GromacsCommand

method), 20
commandline() (gromacs.run.MDrunner method), 100
communicate() (gromacs.core.PopenWithInput

method), 23
CONC_WATER (in module gromacs.setup), 93
configdir (in module gromacs.config), 24
CONFIGNAME (in module gromacs.config), 25
configuration (gromacs.config.GMXConfigParser

property), 25
configuration (in module gromacs.config), 25
ConstraintType (class in gromacs.fileformats.blocks),

49
convert_aa_code() (in module gromacs.utilities), 55
create_portable_topology() (in module gro-

macs.cbook), 77

111

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

D
decimate() (gromacs.fileformats.xvg.XVG method), 36
decimate_circmean() (gromacs.fileformats.xvg.XVG

method), 36
decimate_error() (gromacs.fileformats.xvg.XVG

method), 37
decimate_max() (gromacs.fileformats.xvg.XVG

method), 37
decimate_mean() (gromacs.fileformats.xvg.XVG

method), 37
decimate_min() (gromacs.fileformats.xvg.XVG

method), 37
decimate_percentile() (gro-

macs.fileformats.xvg.XVG method), 38
decimate_rms() (gromacs.fileformats.xvg.XVG

method), 38
decimate_smooth() (gromacs.fileformats.xvg.XVG

method), 38
default_color_cycle (gromacs.fileformats.xvg.XVG

attribute), 39
default_extension (gromacs.fileformats.mdp.MDP

attribute), 44
default_extension (gromacs.fileformats.ndx.NDX at-

tribute), 45
default_extension (gromacs.fileformats.xpm.XPM at-

tribute), 43
default_extension (gromacs.fileformats.xvg.XVG at-

tribute), 39
default_extension (gromacs.utilities.FileUtils at-

tribute), 52
defaults (in module gromacs.config), 25
delete_frames() (gromacs.cbook.Frames method), 71
detect_queuing_system() (in module gromacs.qsub),

98
DihedralType (class in gromacs.fileformats.blocks), 49
doc() (gromacs.environment.Flags method), 31

E
edit_mdp() (in module gromacs.cbook), 77, 83
edit_txt() (in module gromacs.cbook), 84
em_schedule() (in module gromacs.setup), 89
energy_minimize() (in module gromacs.setup), 88
environment variable

$HOME, 54
GMXBIN, 27
GMXDATA, 27
GROMACSWRAPPER_SUPPRESS_SETUP_CHECK, 24
GW_START_LOGGING, 14
LD_LIBRARY_PATH, 27
PATH, 1, 15, 19, 20, 22, 27, 54, 100, 102, 103

error (gromacs.fileformats.xvg.XVG property), 39
errorbar() (gromacs.fileformats.xvg.XVG method), 39
Exclusion (class in gromacs.fileformats.blocks), 49
extract() (gromacs.cbook.Frames method), 71

F
failuremode (gromacs.core.GromacsCommand prop-

erty), 20
failuremodes (gromacs.core.GromacsCommand

attribute), 20
filename() (gromacs.utilities.FileUtils method), 52
FileUtils (class in gromacs.utilities), 52
find_executables() (in module gromacs.tools), 61
find_first() (in module gromacs.utilities), 54
find_gromacs_command() (in module gromacs.run),

103
firstof() (in module gromacs.utilities), 54
fit() (gromacs.cbook.Transformer method), 72
Flag (class in gromacs.environment), 31
flag() (gromacs.qsub.QueuingSystem method), 97
Flags (class in gromacs.environment), 30
flags (in module gromacs.environment), 30
flagsDocs (class in gromacs.environment), 30
format (gromacs.fileformats.ndx.NDX attribute), 46
framenumber (gromacs.cbook.Frames attribute), 71
Frames (class in gromacs.cbook), 70

G
generate_submit_array() (in module gromacs.qsub),

98
generate_submit_scripts() (in module gro-

macs.qsub), 97
get() (gromacs.fileformats.ndx.NDX method), 46
get_configuration() (in module gromacs.config), 24
get_double_or_single_prec_mdrun() (in module

gromacs.run), 103
get_lipid_vdwradii() (in module gromacs.setup), 92
get_ndx_groups() (in module gromacs.cbook), 82
get_template() (in module gromacs.config), 26
get_templates() (in module gromacs.config), 26
get_volume() (in module gromacs.cbook), 75, 76
getLogLevel() (gromacs.config.GMXConfigParser

method), 25
getpath() (gromacs.config.GMXConfigParser method),

25
gmx_resid() (gromacs.cbook.IndexBuilder method), 81
GMXBIN, 27
GMXConfigParser (class in gromacs.config), 25
GMXDATA, 27
gromacs

module, 11
gromacs.cbook

module, 68
gromacs.collections

module, 56
gromacs.config

module, 23
gromacs.core

module, 17

112 Index

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.environment
module, 29

gromacs.fileformats.blocks
module, 48

gromacs.fileformats.convert
module, 49

gromacs.fileformats.mdp
module, 44

gromacs.fileformats.ndx
module, 45

gromacs.fileformats.top
module, 47

gromacs.fileformats.xpm
module, 42

gromacs.fileformats.xvg
module, 32

gromacs.qsub
module, 93

gromacs.run
module, 98

gromacs.scaling
module, 93

gromacs.setup
module, 84

gromacs.tools
module, 56

gromacs.utilities
module, 51

GromacsCommand (class in gromacs.core), 19
GromacsCommandMultiIndex (class in gromacs.tools),

58
GromacsError, 13
GromacsFailureWarning, 13
GromacsImportWarning, 14
GromacsToolLoadingError, 61
GromacsValueWarning, 14
GROMACSWRAPPER_SUPPRESS_SETUP_CHECK, 24
grompp_qtot() (in module gromacs.cbook), 76, 79
groups (gromacs.fileformats.ndx.NDX property), 46
GW_START_LOGGING, 14

H
has_arrays() (gromacs.qsub.QueuingSystem method),

97
hasmethod() (in module gromacs.utilities), 55
help() (gromacs.core.Command method), 22
help() (gromacs.core.GromacsCommand method), 20

I
ImproperType (class in gromacs.fileformats.blocks), 49
in_dir() (in module gromacs.utilities), 54
IndexBuilder (class in gromacs.cbook), 79
IndexSet (class in gromacs.fileformats.ndx), 47

infix_filename() (gromacs.utilities.FileUtils
method), 52

InteractionType (class in gromacs.fileformats.blocks),
49

isMine() (gromacs.qsub.QueuingSystem method), 97
isstream() (in module gromacs.utilities), 53
items() (gromacs.environment.Flags method), 31
iterable() (in module gromacs.utilities), 54

J
join() (gromacs.fileformats.ndx.uniqueNDX method),

46

K
keep_protein_only() (gromacs.cbook.Transformer

method), 73

L
LD_LIBRARY_PATH, 27
load_v4_tools() (in module gromacs.tools), 60
load_v5_tools() (in module gromacs.tools), 61
logfilename (in module gromacs.config), 27
loglevel_console (in module gromacs.config), 27
loglevel_file (in module gromacs.config), 27
LowAccuracyWarning, 14

M
ma (gromacs.fileformats.xvg.XVG property), 39
make_main_index() (in module gromacs.setup), 92
make_ndx_captured() (in module gromacs.cbook), 82
make_valid_identifier() (in module gromacs.tools),

61
max (gromacs.fileformats.xvg.XVG property), 39
maxpoints_default (gromacs.fileformats.xvg.XVG at-

tribute), 40
MD() (in module gromacs.setup), 91
MD_restrained() (in module gromacs.setup), 89
MDP (class in gromacs.fileformats.mdp), 44
mdrun (gromacs.run.MDrunner attribute), 100
mdrun (gromacs.run.MDrunnerMpich2Smpd attribute),

102
mdrun (gromacs.run.MDrunnerOpenMP attribute), 102
MDrunner (class in gromacs.run), 99
MDrunnerDoublePrecision (class in gromacs.run),

101
MDrunnerMpich2Smpd (class in gromacs.run), 102
MDrunnerOpenMP (class in gromacs.run), 102
mean (gromacs.fileformats.xvg.XVG property), 40
merge_ndx() (in module gromacs.tools), 59
min (gromacs.fileformats.xvg.XVG property), 40
MissingDataError, 13
MissingDataWarning, 14
module

gromacs, 11

Index 113

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

gromacs.cbook, 68
gromacs.collections, 56
gromacs.config, 23
gromacs.core, 17
gromacs.environment, 29
gromacs.fileformats.blocks, 48
gromacs.fileformats.convert, 49
gromacs.fileformats.mdp, 44
gromacs.fileformats.ndx, 45
gromacs.fileformats.top, 47
gromacs.fileformats.xpm, 42
gromacs.fileformats.xvg, 32
gromacs.qsub, 93
gromacs.run, 98
gromacs.scaling, 93
gromacs.setup, 84
gromacs.tools, 56
gromacs.utilities, 51

Molecule (class in gromacs.fileformats.blocks), 48
mpicommand() (gromacs.run.MDrunner method), 100
mpiexec (gromacs.run.MDrunner attribute), 101
mpiexec (gromacs.run.MDrunnerMpich2Smpd at-

tribute), 102
mpiexec (gromacs.run.MDrunnerOpenMP attribute),

102

N
NAMES5TO4 (in module gromacs.tools), 60
ncol (gromacs.fileformats.ndx.NDX attribute), 46
NDX (class in gromacs.fileformats.ndx), 45
ndxlist (gromacs.fileformats.ndx.NDX property), 46
NonbondedParamType (class in gro-

macs.fileformats.blocks), 49
number_pdbs() (in module gromacs.utilities), 55

O
openany() (in module gromacs.utilities), 53
outfile() (gromacs.cbook.Transformer method), 74

P
Param (class in gromacs.fileformats.blocks), 49
parse() (gromacs.fileformats.xpm.XPM method), 43
parse() (gromacs.fileformats.xvg.XVG method), 40
parse_ndxlist() (in module gromacs.cbook), 76, 81
ParseError, 13
partial_tempering() (in module gromacs.scaling), 93
PATH, 1, 15, 19, 20, 22, 27, 54, 100, 102, 103
path (in module gromacs.config), 24
plot() (gromacs.fileformats.xvg.XVG method), 40
plot_coarsened() (gromacs.fileformats.xvg.XVG

method), 41
Popen() (gromacs.core.Command method), 21
Popen() (gromacs.core.GromacsCommand method), 20
PopenWithInput (class in gromacs.core), 23

posthook() (gromacs.run.MDrunner method), 101
posthook() (gromacs.run.MDrunnerMpich2Smpd

method), 102
prehook() (gromacs.run.MDrunner method), 101
prehook() (gromacs.run.MDrunnerMpich2Smpd

method), 102
prop() (gromacs.environment.Flag method), 31

Q
qscript_template (in module gromacs.config), 29
qscriptdir (in module gromacs.config), 29
queuing_systems (in module gromacs.qsub), 98
QueuingSystem (class in gromacs.qsub), 96

R
read() (gromacs.fileformats.mdp.MDP method), 45
read() (gromacs.fileformats.ndx.NDX method), 46
read() (gromacs.fileformats.xpm.XPM method), 43
read() (gromacs.fileformats.xvg.XVG method), 41
realpath() (in module gromacs.utilities), 54
register() (gromacs.environment.Flags method), 31
registry (in module gromacs.tools), 61
Release (class in gromacs.tools), 59
remove_legend() (in module gromacs.utilities), 55
renumber_atoms() (gro-

macs.fileformats.blocks.Molecule method),
48

rmsd_backbone() (in module gromacs.cbook), 68
rp() (gromacs.cbook.Transformer method), 74
run() (gromacs.core.Command method), 22
run() (gromacs.core.GromacsCommand method), 20
run() (gromacs.run.MDrunner method), 101
run_check() (gromacs.run.MDrunner method), 101

S
scale_dihedrals() (in module gromacs.scaling), 93
scale_impropers() (in module gromacs.scaling), 93
set() (gromacs.fileformats.ndx.NDX method), 46
set() (gromacs.fileformats.xvg.XVG method), 41
set_correlparameters() (gro-

macs.fileformats.xvg.XVG method), 41
set_gmxrc_environment() (in module gro-

macs.config), 27
setdefault() (gromacs.environment.Flags method), 31
setdefault() (gromacs.fileformats.ndx.NDX method),

46
SettleType (class in gromacs.fileformats.blocks), 49
setup() (in module gromacs.config), 24
signal_handler() (gromacs.run.MDrunner method),

101
size() (gromacs.fileformats.ndx.NDX method), 46
sizes (gromacs.fileformats.ndx.NDX property), 46
solvate() (in module gromacs.setup), 86

114 Index

GromacsWrapper Documentation, Release 0.8.5+23.g463820c.dirty

std (gromacs.fileformats.xvg.XVG property), 41
strip_fit() (gromacs.cbook.Transformer method), 74
strip_water() (gromacs.cbook.Transformer method),

74
System (class in gromacs.fileformats.blocks), 48
SystemToGroTop (class in gromacs.fileformats.top), 47

T
tc (gromacs.fileformats.xvg.XVG property), 41
templates (in module gromacs.config), 29
templatesdir (in module gromacs.config), 29
Timedelta (class in gromacs.utilities), 53
to_unicode() (in module gromacs.fileformats.convert),

51
tool_factory() (in module gromacs.tools), 60
TOP (class in gromacs.fileformats.top), 47
topology() (in module gromacs.setup), 86
totalframes (gromacs.cbook.Frames attribute), 71
transform_args() (gromacs.core.Command method),

23
transform_args() (gromacs.core.GromacsCommand

method), 21
Transformer (class in gromacs.cbook), 71
trj_compact() (in module gromacs.cbook), 68
trj_fitandcenter() (in module gromacs.cbook), 68
trj_xyfitted() (in module gromacs.cbook), 68

U
uncomment() (gromacs.fileformats.xpm.XPM static

method), 43
uniqueNDX (class in gromacs.fileformats.ndx), 46
unlink_f() (in module gromacs.utilities), 55
unlink_gmx() (in module gromacs.utilities), 55
unlink_gmx_backups() (in module gromacs.utilities),

55
unquote() (gromacs.fileformats.xpm.XPM static

method), 43
update() (gromacs.environment.Flags method), 31
UsageWarning, 14

V
V4TOOLS (in module gromacs.tools), 60
values() (gromacs.environment.Flags method), 31
vdw_lipid_atom_radii (in module gromacs.setup), 93
vdw_lipid_resnames (in module gromacs.setup), 93
VirtualSites3Type (class in gro-

macs.fileformats.blocks), 49

W
which() (in module gromacs.utilities), 54
withextsep() (in module gromacs.utilities), 54
write() (gromacs.fileformats.mdp.MDP method), 45
write() (gromacs.fileformats.ndx.NDX method), 46

write() (gromacs.fileformats.top.TOP method), 47
write() (gromacs.fileformats.xvg.XVG method), 42

X
XPM (class in gromacs.fileformats.xpm), 42
xvalues (gromacs.fileformats.xpm.XPM attribute), 42
XVG (class in gromacs.fileformats.xvg), 34

Y
yvalues (gromacs.fileformats.xpm.XPM attribute), 42

Index 115

	Getting started
	License
	Citing
	Contact
	Installation
	pip installation
	conda installation
	Manual Download
	Source code access
	Requirements
	System requirements
	Required Python modules

	Quick Start
	GromacsWrapper Overview
	Modules
	Examples
	Getting help
	Simple usage

	Warnings and Exceptions
	Logging
	Version

	Configuration
	Default configuration
	Basic options
	More options
	Creating default configuration files and directories

	API documentation
	Gromacs core modules
	gromacs.core – Core functionality
	Input and Output
	Classes

	gromacs.config – Configuration for GromacsWrapper
	Configuration management
	Users
	Developers
	Accessing configuration and template files

	Logging
	Gromacs tools and scripts
	Setting up the environment
	List of tools

	Location of template files

	gromacs.environment – Run time modification of behaviour
	List of GromacsWrapper flags with default values
	Classes

	gromacs.formats – Accessing various files
	Simple xmgrace XVG file format
	Errors
	Plotting
	Data selection
	Coarse grainining of data
	Examples
	Classes and functions

	Gromacs XPM file format
	Classes
	Example: Analysing H-bonds

	Gromacs parameter MDP file format
	Gromacs NDX index file format
	Gromacs Preprocessed Topology (top) Parser
	Gromacs TOP file format
	Classes
	History
	Example: Read a processed.top file and scale charges
	Gromacs TOP - BLOCKS boiler-plate code
	Classes
	History

	gromacs.fileformats.convert — converting entries of tables

	gromacs.utilities – Helper functions and classes
	Classes
	Functions
	Data

	analysis.collections – Handling of groups of simulation instances
	gromacs.tools – Gromacs commands classes
	Gromacs tool instantiation
	Aliased commands
	Multi index
	Virtual Gromacs commands
	Helpers
	Gromacs tools
	Registry
	Command list

	Gromacs building blocks
	gromacs.cbook – Gromacs Cook Book
	Miscellaneous canned Gromacs commands
	Manipulating trajectories and structures
	Processing output
	Working with topologies and mdp files
	Working with index files
	File editing functions

	gromacs.setup – Setting up a Gromacs MD run
	User functions
	Example
	User functions
	Helper functions

	gromacs.scaling – Partial tempering
	gromacs.qsub – utilities for batch submission systems
	Queuing system templates
	Example queuing system script template for PBS

	Classes and functions

	gromacs.run – Running simulations
	Example: How to create your own MDrunner with mpiexec -n
	MDrunner
	Example implementations
	Helper functions

	Alternatives to GromacsWrapper

	Bibliography
	Python Module Index
	Index

